CHS 1440-0001 Exam **4** version **A**

Fall Semester, Dec. 2021 A UCF ID is required.

On your pink TEST FORM, write your correct Name and the Date.

Shade in the following: correct **PID**; <u>test version (form</u>). Your grade cannot be posted in webcourses if your PID or test form, or both, are incorrect or missing!

Use of a nonprogrammable (nongraphing) calculator is permitted, e.g., TI-30X series! No graphing calculators, nor cell phones. All other electronic devices should be properly stored away.

Read the questions and the answers carefully. Write/work on the test!

Choose the correct answer to each question. There are **20** *questions with* **5** *choices, a-e*!!

A periodic table is attached.

The useful constants and relationships are attached.

1. On the basis of your experience, predict which of the following reactions are spontaneous.

1) NaCl(s) \rightarrow NaCl(l) at 25 °C 2) 2 NaCl(s) \rightarrow 2 Na(s) + Cl₂(g) 3) CO₂(g) \rightarrow CO₂(s) at 25 °C 4) CO₂(g) \rightarrow C(s) + O₂(g) 5) H₂O(s) \rightarrow H₂O(l) at 25 °C a) 1, 2, and 3 b) 1, 2, and 4 c) 3 and 5 d) 3 e) 5

- 2. Without doing a calculation, predict which of the following shows an *increase* in entropy?
 - 1) $\operatorname{CO}_2(g) \longrightarrow \operatorname{CO}_2(s)$ 2) $\operatorname{FeCl}_2(s) + \operatorname{H}_2(g) \longrightarrow \operatorname{Fe}(s) + 2\operatorname{HCl}(g)$ 3) $\operatorname{CO}(g) + 2\operatorname{H}_2(g) \longrightarrow \operatorname{CH}_3\operatorname{OH}(l)$
 - 4) $2H_2O(g) \longrightarrow 2H_2(g) + O_2(g)$
 - 5) $H_2O(s) \longrightarrow H_2O(l)$
 - a) 1, 2, and 4 b) 2, 4, and 5 c) 3 and 5 d) 1 and 3 e) 4 and 5
- 3. The sign of ΔH_{rxn} and ΔS_{rxn} for several reactions are given. In which case is the reaction nonspontaneous at all temperatures?
 - (a) $\Delta H_{rxn} < 0; \Delta S_{rxn} < 0$ (b) $\Delta H_{rxn} < 0; \Delta S_{rxn} > 0$ (c) $\Delta H_{rxn} > 0; \Delta S_{rxn} < 0$
 - (d) $\Delta H_{\rm rxn} > 0$; $\Delta S_{\rm rxn} > 0$
 - (e) $\Delta H_{\rm rxn} = \Delta S_{\rm rxn}$
- 4. Select the correct statement that corresponds to the second law of thermodynamics.
 - (a) The standard Gibbs free energy change, ΔG° , can be calculated from Gibbs free energies of formation, ΔG_{f}°
 - (b) The entropy of a perfect crystal of any pure substance approaches zero, as the temperature approaches absolute zero (0 K)
 - (c) The entropy change for a reaction, ΔS° , can be calculated from the standard molar entropies of the reactants and products
 - (d) $\Delta E_{\text{universe}} = \Delta E_{\text{system}} + \Delta E_{\text{surroundings}} = 0$

(e) In any spontaneous process, $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings} > 0$

- 5. Which statement is true for the melting of ice cube at 25 °C?
 - a) ΔH is positive; ΔS is positive; ΔG is positive.
 - b) Δ H is positive; Δ S is positive; Δ G is negative.
 - c) Δ H is negative; Δ S is positive; Δ G is negative.
 - d) Δ H is positive; Δ S is negative; Δ G is positive.
 - e) Δ H is negative; Δ S is negative; Δ G is negative.
- 6. Confirm that the reaction below would be spontaneous, or nonspontaneous at 45°C, by calculating the standard free energy change, ΔG° , using values for ΔH° and ΔS° .

$$A + B \rightarrow C$$

$$\Delta H_{rxn}^{o} = -286.6 \text{ kJ}; \quad \Delta S_{rxn}^{o} = -244.0 \text{ J/K}$$

- (a) -209 kJ; the reaction is spontaneous at 45°C.
- (b) +209 kJ; the reaction is nonspontaneous at 45° C.
- (c) -531 kJ; the reaction is spontaneous at 45°C.
- (d) +43 kJ; the reaction is not spontaneous at 45° C.
- (e) -43 kJ; the reaction is spontaneous at 45°C.
- 7. For which of the following substances is $\Delta H_{f^{\circ}} = 0$; $\Delta G_{f^{\circ}} = 0$?
 - 1) Al(g)
 - 2) C(s, diamond)
 - 3) C(s, graphite)
 - 4) $CO_2(g)$
 - 5) $O_2(g)$

a) 1, 3, and 5 b) 2, 3, and 5 c) 3 and 5 d) 2 and 3 e) 5

8. When magnesium sulfite decomposes, the solid transforms into magnesium oxide and sulfur dioxide.

$$MgSO_3(s) \rightarrow MgO(s) + SO_2(g)$$

At what temperature will this reaction be spontaneous according to Gibb's Energy?

 $\Delta H_{\rm f}^{\rm o}$ in kJ/mol for: MgSO₃(*s*) = -1068, MgO(*s*) = -601.8, SO₂(*g*) = -296.8 S^o in J/mol K for: MgSO₃(*s*) = 121, MgO(*s*) = 27, SO₂(*g*) = 248.1

- (a) temps below -63.1 K
 (b) temps below 179.5 K
 (c) temps below 415.8 K
 (d) temps above 415.8 K
 (e) temps above 1100 K
- 9. Confirm that the reaction below would be spontaneous, or nonspontaneous at 25°C, by calculating the standard free energy change, ΔG° , using values for ΔG_{f}° .

$$\Delta G_{\rm f}^{\rm o}(\rm kJ/mol) \qquad \begin{array}{c} 2 \ {\rm C}_{4}{\rm H}_{10}(g) + 13 \ {\rm O}_{2}(g) \rightarrow 8 \ {\rm CO}_{2}(g) + 10 \ {\rm H}_{2}{\rm O}(l) \\ -15.71 \qquad 0 \qquad -394.4 \qquad -237.2 \end{array}$$

- (a) -615.89 kJ; the reaction is spontaneous.
- (b) +615.89 kJ; the reaction is not spontaneous.
- (c) 0 kJ; the reaction is spontaneous.
- (d) +5496 kJ; the reaction is not spontaneous.
- (e) -5496 kJ; the reaction is spontaneous.
- 10. If a 5.0 L flask holds 0.125 moles of nitrogen at STP, what happens to the entropy of the system upon heating the gas to 125 °C?
 - (a) The entropy is zero.
 - (b) The entropy increases.
 - (c) The entropy remains the same.
 - (d) The entropy decreases.
 - (e) There is too little information to assess the change.
- 11. In the first 10.0 s of the reaction, the concentration of A decreased from 0.48 M to 0.12 M. What is the rate of the reaction in this time interval?

- (a) 1.2×10⁻² M/s
 (b) 0.36 M/s
 (c) 0.18 M/s
 (d) 3.6×10⁻² M/s
 (e) 1.8×10⁻² M/s
- 12. If ammonia, NH₃(g), is being produced at a rate of 4.26×10^{-5} mol L⁻¹ s⁻¹, at what rate is hydrogen gas being consumed?

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

- (a) $1.42 \times 10^{-5} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$. (b) $2.13 \times 10^{-5} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$. (c) $4.26 \times 10^{-5} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$. (d) $6.39 \times 10^{-5} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$ (e) $1.28 \times 10^{-4} \text{ M/s}$
- 13. Based on the generic rate law, which of the following are correct?

Rate of reaction = $k[A]^m [B]^n$

- 1) The experimentally determined exponents (m, n) are referred to as the order of the reaction with respect to A and B, respectively.
- 2) If m = 1, the reaction is first order with respect to A.
- 3) If m = 0, the reaction is independent of the concentration of B.
- 4) If n = 2, the reaction is second order with respect to A.
- 5) The overall order of the reaction = m + n
- a) 1, 2, and 5 b) 2, 3, and 4 c) 1 and 5 d) 4 and 5 e) 5
- 14. Consider the reaction: $2A + B \rightarrow C$, and a kinetics study on this reaction yielded:

$[A] mol \cdot L^{-1}$	$[B] mol \cdot L^{-1}$	Rate = mol·L ⁻¹ ·s ⁻¹
0.100	0.200	5.01×10^{-3}
0.050	0.200	1.25×10^{-3}
0.050	0.100	1.26×10^{-3}

What is the value of the rate constant?

(a) 3.20 L·mol⁻¹·s⁻¹
(b) 19.8 L·mol⁻¹·s⁻¹
(c) 0.501 L·mol⁻¹·s⁻¹
(d) 4.60 L·mol⁻¹·s⁻¹
(e) 4.60 s⁻¹

15. The decomposition of N₂O₅ in solution of carbon tetrachloride is a first-order reaction:

$$2 \text{ N}_2\text{O}_5 \rightarrow 4 \text{ NO}_2 + \text{O}_2$$

The rate constant at a given temperature is found to be 5.25×10^{-4} s⁻¹. If the initial concentration of N₂O₅ is 0.200 M, what is its concentration after exactly 10 minutes have passed?

(a) 0.000 M
(b) 0.073 M
(c) 0.146 M
(d) 0.167 M
(e) 0.191 M

16. Consider the decomposition of N₂O₅ by the following equation.

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

The mechanism includes three elementary steps:

 $N_2O_5 \rightarrow NO_2 + NO_3$

 $NO_2 + NO_3 \rightarrow NO_2 + NO + O_2$

 $NO + NO_3 \rightarrow 2NO_2$

Which species is a reactive intermediate?

1) O₂

- 2) NO
- 3) NO₂
- 4) NO₃
- 5) N₂O₅

a) 1, 3, and 5 b) 2 and 4 c) 3 and 4 d) 4 e) all of them

17. If a reaction is zero order with respect to [A], doubling the concentration of [A] will result in:

(a) a doubling of the rate

- (b) a tripling of the rate
- (c) a four-fold increase in rate
- (d) an eight-fold increase in rate
- (e) no change in the rate of reaction
- 18. If the initial concentration of the reactant in a first-order reaction A → products is 0.64 mol/L and the half-life is 30.0 s, how long would it take for the concentration of the reactant to drop to 0.020 mol/L?
 - (a) 30.0 s
 - (b) 60.0 s
 - (c) 90.0 s
 - (d) 120.0 s
 - (e) 150.0 s
- 19. Consider the elementary step: $2X \rightarrow Z$. What type of elementary step is this?
 - (a) unimolecular
 - (b) bimolecular
 - (c) termolecular
 - (d) all of the above
 - (e) none of the above
- 20. Raising the temperature of a reaction elevates the rate of reaction by:
 - (a) increasing the energy of activation
 - (b) creating more molecules in the reaction.
 - (c) providing a new reaction mechanism
 - (d) increasing the number of molecules moving at a speed sufficiently high enough to produce a reactive collision.
 - (e) decreasing the entropy of the system.

End.....

	7	6	Сī	4	ω	2	_	
	87 Fr 223 Francium	55 CS 132.9055 Caesium	37 Rb 85.4678 Rubidium	19 K 39,0983 Potassium	Na Na 22.9898 Sodium	3 Li 6.941 Lithium	1 1.0079 Hydrogen	<u>ب</u>
anthanide	88 Ra 226 Radium	56 Ba 137.327 Barium	38 Sr ^{87.62} Strontium	20 Ca 40.078 Calcium	12 Mg 24.3050 Magnesium	4 Be 9.0122 Beryllium		2
57 2	89 103	57 71	39 Y 88.9059 Yttrium	21 Sc 44.9559 Scandium				ω
	104 Rf 267 Rutherfordium	72 Hf 178.49 Hafnium	40 Zr 91.224 Zirconium	22 Ti 47.87 Titanium				4
59 Dr	105 Db 268 Dubnium	T3 Ta 180.9479 Tantalum	41 Nb 92.9064 Niobium	23 V 50.9415 Vanadium			Atomi	ഗ
ຂຶ	106 Sg ²⁶⁹ Seaborgium	74 W 183.84 Tungsten	42 MO 95.96 Molybdenum	24 Cr 51.9961 Chromium		Symbol	c Number	0
۵ ۳	107 Bh 270 Bohrium	75 Re 186.207 Rhenium	43 TC 98 Technetium	25 Mn 54.9380 Manganese	Ну		→ →	7
∧° M	108 HS ²⁶⁹ Hassium	76 OS ^{190.2} Osmium	44 Ru 101.07 Ruthenium	26 Fe 55.85 Iron	drogen 🔺	1.008 ⊥		œ
⊑ =	109 Mt ²⁷⁸ Meitnerium	77 r 192.22 Iridium	45 Rh 102.9055 Rhodium	27 CO 58.9332 Cobalt	Nam	Ator		9
⁴ ک	110 DS 281 Darmstadtium	78 Pt 195.08 Platinum	46 Pd 106.42 Palladium	28 Ni 58.6934 Nickel	ō	nic Mass		10
۲۲ ۳	111 Rg 281 Roentgenium	79 Au 196.9665 Gold	47 Ag 107.8682 Silver	29 Cu 63.546 Copper				
ک ر د	112 Cn 285 Copernicium	80 Hg 200.59 Mercury	48 Cd 112.411 Cadmium	30 Zn 65.38 Zinc				12
67 H O	113 Uut 286 Ununtrium	81 T 204.3833 Thallium	49 In 114.82 Indium	31 Ga 69.723 Gallium	13 Al 26.9815 Aluminium	5 B 10.811 Boron		13
5 8 7	114 Fl 289 Flerovium	82 Pb 207.2 Lead	50 Sn ^{118,710} Tin	32 Ge 72.64 Germanium	14 Si 28.0855 Silicon	6 C 12.011 Carbon		14
۲ ۳	115 Uup 289 Ununpentium	83 Bi 208.9804 Bismuth	51 Sb 121.76 Antimony	33 AS 74.9216 Arsenic	15 P 30.9738 Phosphorus	r Nitrogen		15 15
۲۰ ۳	116 LV 293 Livermorium	84 PO 209 Polonium	52 Te 127.60 Tellurium	34 Se 78.96 Selenium	16 S 32.065 Sulfur	8 0 15.9994 Oxygen		16
- ¹⁷	Ununseptium	At At Astatine	53	35 Br 79.904 Bromine	17 Cl 35,453 Chlorine	9 F 18.9984 Fluorine		17
	118 Uuo 294 Ununoctium	Rn Rn ²²² Radon	54 Xe ^{131,29} Xenon	36 Kr 83.80 Krypton	18 Ar 39.948 Argon	10 Neon	2 He 4.0026 Helium	18

Actinide	anthanide
Series	Series
89	57
AC	La
227	138.9055
Actinium	Lanthanum
90	58
Th	Ce
232.0381	140.116
Thorium	Cerium
91	59
Pa	Pr
231.0359	140.9076
Protactinium	Praseodymium
92 U 238.0289 Uranium	Neodymium
93	Pm
Nap	145
Neptunium	Promethium
94	62
Pu	Sm
244	150.36
Plutonium	Samarium
Am 243 Americium	63 EU 151.964 Europium
247 Curium	64 Gd 157.25 Gadolinium
97	65
BK	Tb
247	158.9253
Berkelium	Terbium
98	66
Cf	Dy
²⁵¹	162.50
Californium	Dysprosium
99	67
ES	HO
252	164.9303
Einsteinium	Holmium
100	68
Fm	⊑r
²⁵⁷	167.26
Fermium	Erbium
101	б9
Md	Тт
258	168.9342
Mendelevium	Thulium
Nobelium	70 Yb 173.054 Ytterbium
103	דז
Lr	Lu
262	174,967
Lawrencium	Lutetium

SOME USEFUL CONSTANTS

(a more complete list appears in Appendix B)

Atomic mass unit Avogadro's number Electronic charge Faraday constant

Gas constant

Pi Planck's constant Speed of light (in vacuum) 1 amu = 1.6606×10^{-24} g $N = 6.02214179 \times 10^{23}$ particles/mol $e = 1.60218 \times 10^{-19}$ coulombs F = 96,485.3399 coulombs/mol $e^ R = 0.08206 \frac{\text{L atm}}{\text{mol K}} = 1.987 \frac{\text{cal}}{\text{mol K}}$ $= 8.314472 \frac{\text{J}}{\text{mol K}} = 8.314472 \frac{\text{kPa dm}^3}{\text{mol K}}$ $\pi = 3.1415927$ $h = 6.62600896 \times 10^{-34}$ J s $c = 2.99792458 \times 10^8$ m/s

SOME USEFUL RELATIONSHIPS

Mass and Weight

SI Base Unit: Kilogram (kg)

1 kilogram = 1000 grams = 2.205 pounds 1 gram = 1000 milligrams 1 pound = 453.59 grams 1 amu = 1.6606 × 10⁻²⁴ grams 1 gram = 6.022 × 10²³ amu

1 ton = 2000 pounds

Volume

SI Base Unit: Cubic Meter (m³)

1 liter = 0.001 cubic meter 1 liter = 1000 cubic centimeters = 1000 mL 1 liter = 1.056 quarts 1 quart = 0.9463 liter 1 milliliter = 0.001 liter = 1 cubic centimeter cubic foot = 7.475 gallons = 28.316 liters 1 gallon = 4 quarts

Pressure

SI Base Unit: Pascal (Pa)

 $1 \text{ pascal} = \frac{\text{kg}}{\text{m s}^2} = 1 \text{ Newton/m}^2$ 1 atmosphere = 760 torr = 760 millimeters of mercury = 1.01325 × 10⁵ pascals = 1.01325 bar = 14.70 pounds per square inch

1 torr = 1 millimeter of mercury

Length

SI Base Unit: Meter (m)

- 1 inch = 2.54 centimeters (exactly) 1 meter = 100 centimeters = 39.37 inches
 - 1 yard = 0.9144 meter
 - 1 mile = 1.609 kilometers
- 1 kilometer = 1000 meters = 0.6215 mile 1 Ångstrom = 1.0×10^{-10} meters = 1.0×10^{-8} centimeters

Energy

SI Base Unit: Joule (J)

 $1 \text{ calorie} = 4.184 \text{ joules} = 4.129 \times 10^{-2} \text{ L atm}$ $1 \text{ joule} = 1 \frac{\text{kg m}^2}{\text{s}^2} = 0.23901 \text{ calorie}$ $1 \text{ joule} = 1 \times 10^7 \text{ ergs}$ $1 \text{ electron volt} = 1.6022 \times 10^{-19} \text{ joule}$ 1 electron volt = 96.485 kJ/mol1 L atm = 24.217 calories = 101.325 joules

Temperature

SI Base Unit: Kelvin (K)

 $\begin{array}{l} 0 \ \mathrm{K} = -273.15^{\circ}\mathrm{C} \\ \mathrm{K} = ^{\circ}\mathrm{C} + 273.15^{\circ} \\ ^{\circ}\mathrm{F} = 1.8(^{\circ}\mathrm{C}) + 32^{\circ} \\ ^{\circ}\mathrm{C} = \frac{^{\circ}\mathrm{F} - 32^{\circ}}{1.8^{\circ}} \end{array}$