CHS 1440-0001
Exam 4 version \mathbf{A}
Fall Semester, Dec. 2021
A UCF ID is required.
On your pink TEST FORM, write your correct Name and the Date.
Shade in the following: correct PID; test version (form). Your grade cannot be posted in webcourses if your PID or test form, or both, are incorrect or missing!

Use of a nonprogrammable (nongraphing) calculator is permitted, e.g., TI-30X series! No graphing calculators, nor cell phones. All other electronic devices should be properly stored away.

Read the questions and the answers carefully. Write/work on the test!
Choose the correct answer to each question. There are 20 questions with 5 choices, a-e!!

A periodic table is attached.
The useful constants and relationships are attached.

1. On the basis of your experience, predict which of the following reactions are spontaneous.
1) $\mathrm{NaCl}(s) \rightarrow \mathrm{NaCl}(l)$ at $25^{\circ} \mathrm{C}$
2) $2 \mathrm{NaCl}(s) \rightarrow 2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g)$
3) $\mathrm{CO}_{2}(g) \rightarrow \mathrm{CO}_{2}(s)$ at $25^{\circ} \mathrm{C}$
4) $\mathrm{CO}_{2}(g) \rightarrow \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(g)$
5) $\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$ at $25^{\circ} \mathrm{C}$
a) 1,2, and 3
b) 1, 2, and 4
c) 3 and 5
d) 3
e) 5
2. Without doing a calculation, predict which of the following shows an increase in entropy?
1) $\mathrm{CO}_{2}(g) \longrightarrow \mathrm{CO}_{2}(s)$
2) $\mathrm{FeCl}_{2}(s)+\mathrm{H}_{2}(g) \longrightarrow \mathrm{Fe}(s)+2 \mathrm{HCl}(g)$
3) $\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$
4) $2 \mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)$
5) $\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)$
a) 1,2, and 4
b) 2, 4, and 5
c) 3 and 5
d) 1 and 3 e) 4 and 5
3. The sign of ΔH_{rxn} and ΔS_{rxn} for several reactions are given. In which case is the reaction nonspontaneous at all temperatures?
(a) $\Delta H_{\mathrm{rxn}}<0 ; \Delta S_{\mathrm{rxn}}<0$
(b) $\Delta H_{\mathrm{rxn}}<0 ; \Delta S_{\mathrm{rxn}}>0$
(c) $\Delta H_{\mathrm{rxn}}>0 ; \Delta S_{\mathrm{rxn}}<0$
(d) $\Delta H_{\mathrm{rxn}}>0 ; \Delta S_{\mathrm{rxn}}>0$
(e) $\Delta H_{\mathrm{rxn}}=\Delta S_{\mathrm{rxn}}$
4. Select the correct statement that corresponds to the second law of thermodynamics.
(a) The standard Gibbs free energy change, ΔG^{o}, can be calculated from Gibbs free energies of formation, $\Delta G_{f}{ }^{\circ}$
(b) The entropy of a perfect crystal of any pure substance approaches zero, as the temperature approaches absolute zero (0 K)
(c) The entropy change for a reaction, ΔS°, can be calculated from the standard molar entropies of the reactants and products
(d) $\Delta E_{\text {universe }}=\Delta E_{\text {system }}+\Delta E_{\text {surroundings }}=0$
(e) In any spontaneous process, $\Delta S_{\text {universe }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}>0$
5. Which statement is true for the melting of ice cube at $25^{\circ} \mathrm{C}$?
a) $\Delta \mathrm{H}$ is positive; $\Delta \mathrm{S}$ is positive; $\Delta \mathrm{G}$ is positive.
b) $\Delta \mathrm{H}$ is positive; $\Delta \mathrm{S}$ is positive; $\Delta \mathrm{G}$ is negative.
c) $\Delta \mathrm{H}$ is negative; $\Delta \mathrm{S}$ is positive; $\Delta \mathrm{G}$ is negative.
d) $\Delta \mathrm{H}$ is positive; $\Delta \mathrm{S}$ is negative; $\Delta \mathrm{G}$ is positive.
e) $\Delta \mathrm{H}$ is negative; $\Delta \mathrm{S}$ is negative; $\Delta \mathrm{G}$ is negative.
6. Confirm that the reaction below would be spontaneous, or nonspontaneous at $45^{\circ} \mathrm{C}$, by calculating the standard free energy change, ΔG^{o}, using values for ΔH° and ΔS^{o}.

$$
\begin{gathered}
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C} \\
\Delta H_{\mathrm{rxn}}{ }^{\mathrm{o}}=-286.6 \mathrm{~kJ} ; \Delta S_{\mathrm{rxn}}{ }^{\mathrm{o}}=-244.0 \mathrm{~J} / \mathrm{K}
\end{gathered}
$$

(a) -209 kJ ; the reaction is spontaneous at $45^{\circ} \mathrm{C}$.
(b) +209 kJ ; the reaction is nonspontaneous at $45^{\circ} \mathrm{C}$.
(c) -531 kJ ; the reaction is spontaneous at $45^{\circ} \mathrm{C}$.
(d) +43 kJ ; the reaction is not spontaneous at $45^{\circ} \mathrm{C}$.
(e) -43 kJ ; the reaction is spontaneous at $45^{\circ} \mathrm{C}$.
7. For which of the following substances is $\Delta H_{\mathrm{f}}{ }^{\circ}=0 ; \Delta G_{\mathrm{f}}{ }^{\circ}=0$?

1) $\mathrm{Al}(g)$
2) $\mathrm{C}(s$, diamond $)$
3) $\mathrm{C}(s$, graphite $)$
4) $\mathrm{CO}_{2}(g)$
5) $\mathrm{O}_{2}(g)$
a) 1,3, and 5
b) 2, 3, and 5
c) 3 and 5
d) 2 and 3
e) 5
8. When magnesium sulfite decomposes, the solid transforms into magnesium oxide and sulfur dioxide.

$$
\mathrm{MgSO}_{3}(s) \rightarrow \mathrm{MgO}(s)+\mathrm{SO}_{2}(g)
$$

At what temperature will this reaction be spontaneous according to Gibb's Energy?
$\Delta H_{\mathrm{f}}{ }^{0}$ in $\mathrm{kJ} / \mathrm{mol}$ for: $\mathrm{MgSO}_{3}(s)=-1068, \mathrm{MgO}(s)=-601.8, \mathrm{SO}_{2}(g)=-296.8$
S^{o} in $\mathrm{J} / \mathrm{mol} \mathrm{K}$ for: $\mathrm{MgSO}_{3}(s)=121, \mathrm{MgO}(s)=27, \mathrm{SO}_{2}(g)=248.1$
(a) temps below -63.1 K
(b) temps below 179.5 K
(c) temps below 415.8 K
(d) temps above 415.8 K
(e) temps above 1100 K
9. Confirm that the reaction below would be spontaneous, or nonspontaneous at $25^{\circ} \mathrm{C}$, by calculating the standard free energy change, ΔG^{0}, using values for $\Delta G_{f}{ }^{0}$.

$$
\begin{array}{ccccc}
& 2 \mathrm{C}_{4} \mathrm{H}_{10}(g)+13 \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(l) \\
\Delta G_{\mathrm{f}}^{\mathrm{o}}(\mathrm{~kJ} / \mathrm{mol}) & -15.71 & 0 & -394.4 & -237.2
\end{array}
$$

(a) -615.89 kJ ; the reaction is spontaneous.
(b) +615.89 kJ ; the reaction is not spontaneous.
(c) 0 kJ ; the reaction is spontaneous.
(d) +5496 kJ ; the reaction is not spontaneous.
(e) -5496 kJ ; the reaction is spontaneous.
10. If a 5.0 L flask holds 0.125 moles of nitrogen at STP, what happens to the entropy of the system upon heating the gas to $125^{\circ} \mathrm{C}$?
(a) The entropy is zero.
(b) The entropy increases.
(c) The entropy remains the same.
(d) The entropy decreases.
(e) There is too little information to assess the change.
11. In the first 10.0 s of the reaction, the concentration of A decreased from 0.48 M to 0.12 M . What is the rate of the reaction in this time interval?
(a) $1.2 \times 10^{-2} \mathrm{M} / \mathrm{s}$
(b) $0.36 \mathrm{M} / \mathrm{s}$
(c) $0.18 \mathrm{M} / \mathrm{s}$
(d) $3.6 \times 10^{-2} \mathrm{M} / \mathrm{s}$
(e) $1.8 \times 10^{-2} \mathrm{M} / \mathrm{s}$
12. If ammonia, $\mathrm{NH}_{3}(\mathrm{~g})$, is being produced at a rate of $4.26 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, at what rate is hydrogen gas being consumed?

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)
$$

(a) $1.42 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
(b) $2.13 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
(c) $4.26 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
(d) $6.39 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(e) $1.28 \times 10^{-4} \mathrm{M} / \mathrm{s}$
13. Based on the generic rate law, which of the following are correct?

$$
\text { Rate of reaction }=k[\mathrm{~A}]^{m}[\mathrm{~B}]^{n}
$$

1) The experimentally determined exponents (m, n) are referred to as the order of the reaction with respect to A and B , respectively.
2) If $m=1$, the reaction is first order with respect to A .
3) If $m=0$, the reaction is independent of the concentration of B.
4) If $n=2$, the reaction is second order with respect to A.
5) The overall order of the reaction $=m+n$
a) 1, 2, and 5
b) 2, 3, and 4
c) 1 and 5
d) 4 and 5
e) 5
14. Consider the reaction: $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$, and a kinetics study on this reaction yielded:

$[\mathrm{A}] \mathrm{mol} \cdot \mathrm{L}^{-1}$	$[\mathrm{~B}] \mathrm{mol} \cdot \mathrm{L}^{-1}$	Rate $=\mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}$
0.100	0.200	5.01×10^{-3}
0.050	0.200	1.25×10^{-3}
0.050	0.100	1.26×10^{-3}

What is the value of the rate constant?
(a) $3.20 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$
(b) $19.8 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$
(c) $0.501 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$
(d) $4.60 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$
(e) $4.60 \mathrm{~s}^{-1}$
15. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in solution of carbon tetrachloride is a first-order reaction:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

The rate constant at a given temperature is found to be $5.25 \times 10^{-4} \mathrm{~s}^{-1}$. If the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is 0.200 M , what is its concentration after exactly 10 minutes have passed?
(a) 0.000 M
(b) 0.073 M
(c) 0.146 M
(d) 0.167 M
(e) 0.191 M
16. Consider the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ by the following equation.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The mechanism includes three elementary steps:
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{NO}_{2}+\mathrm{NO}_{3}$
$\mathrm{NO}_{2}+\mathrm{NO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{NO}+\mathrm{O}_{2}$
$\mathrm{NO}+\mathrm{NO}_{3} \rightarrow 2 \mathrm{NO}_{2}$
Which species is a reactive intermediate?

1) O_{2}
2) NO
3) NO_{2}
4) NO_{3}
5) $\mathrm{N}_{2} \mathrm{O}_{5}$
a) 1,3, and 5
b) 2 and 4
c) 3 and 4
d) 4
e) all of them
17. If a reaction is zero order with respect to [A], doubling the concentration of [A] will result in:
(a) a doubling of the rate
(b) a tripling of the rate
(c) a four-fold increase in rate
(d) an eight-fold increase in rate
(e) no change in the rate of reaction
18. If the initial concentration of the reactant in a first-order reaction $\mathrm{A} \rightarrow$ products is $0.64 \mathrm{~mol} / \mathrm{L}$ and the half-life is 30.0 s , how long would it take for the concentration of the reactant to drop to $0.020 \mathrm{~mol} / \mathrm{L}$?
(a) 30.0 s
(b) 60.0 s
(c) 90.0 s
(d) 120.0 s
(e) 150.0 s
19. Consider the elementary step: $2 \mathrm{X} \rightarrow \mathrm{Z}$. What type of elementary step is this?
(a) unimolecular
(b) bimolecular
(c) termolecular
(d) all of the above
(e) none of the above
20. Raising the temperature of a reaction elevates the rate of reaction by:
(a) increasing the energy of activation
(b) creating more molecules in the reaction.
(c) providing a new reaction mechanism
(d) increasing the number of molecules moving at a speed sufficiently high enough to produce a reactive collision.
(e) decreasing the entropy of the system.

End......

		$\begin{gathered} \text { unligo } \\ \text { Sis } \\ \mathrm{ON}_{7} \end{gathered}$	(tation	m_{J}											${ }^{\text {unnupu }}$	รว!!อร 	
						$\underbrace{\substack{\text { unsis.cssad } \\ \text { oscrat }}}_{99}$						${ }^{\text {cinnurposn }}$				spups apiue	
$\underset{81}{ } \mathrm{On}_{1}$	$\operatorname{sn}_{\mathrm{Lu}}$	$\begin{gathered} \text { nnuoumann } \\ \wedge 67 \\ \hline 962 \\ \hline \end{gathered}$	$\mathrm{dn}_{\mathrm{stl}}^{68 \mathrm{n}}$			$\underset{\text { zit }}{\substack{\text { unpuwado } \\ \text { sig }}}$						K_{901}			801/68		
$\begin{aligned} & \hline \text { uppeq } \\ & \text { urz } \\ & \text { uy } \\ & \hline 98 \end{aligned}$		$\begin{array}{\|c} \hline \text { unnuovod } \\ \mathrm{O}_{02} \\ \mathrm{O}_{\text {t8 }} \end{array}$	$\begin{gathered} \hline \text { ynnusig } \\ \text { toxe } 8802 \\ !9_{88} \end{gathered}$	$\begin{aligned} & \hline \text { pepo } \\ & \text { peove } \\ & \mathrm{qd}_{\mathrm{z8}} \end{aligned}$	$\begin{gathered} \hline \text { unnivel } \\ \text { Enerictor } \\ \mid \perp_{18} \end{gathered}$					$\begin{aligned} & \text { unnuso } \\ & \begin{array}{c} \text { roco } \\ \mathrm{SO}_{9} \end{array} \\ & \hline \end{aligned}$					LL/LS		
	$\begin{gathered} \begin{array}{c} \text { julucurg } \\ \text { tucicic } \\ 1 g_{s \varepsilon} \end{array} \end{gathered}$												$\bigwedge_{\substack{\text { unipuen } \\ \text { sitbos }}}^{\substack{\text { und }}}$				
$\begin{aligned} & \hline 10610 \\ & 88668 \\ & 1 \forall 8 \\ & 81 \end{aligned}$									N	иәбо1	H						
		(1abko		(yoquer	${ }_{\substack{40108 \\ 118801 \\ 8 \\ 5}}$			W	O+V	800		ques					
OH_{2}												quin	mosy				
81	$\angle 1$	91	¢ı	$\dagger 1$	$\varepsilon 1$	21	11	01	6	8	\angle	9	¢	\dagger	ε	乙	1

SOME USEFUL CONSTANTS

SOME USEFUL RELATIONSHIPS

Mass and Weight
SI Base Unit: Kilogram (kg)
1 kilogram $=1000$ grams $=2.205$ pounds
1 gram $=1000$ milligrams
1 pound $=453.59$ grams
1 amu $=1.6606 \times 10^{-24}$ grams
1 gram $=6.022 \times 10^{23}$ amiut
1 ton $=2000$ pounds
Volume
SI Base Unit: Cubic Meter $\left(\mathrm{m}^{3}\right)$
1 liter $=0.001$ cubic meter
1 liter $=1000$ cubic centimeters $=1000 \mathrm{~mL}$
1 liter $=1.056$ quarts
1 quart $=0.9463$ liter
1 milliliter $=0.001$ liter $=1$ cubic centimeter
cubic foot $=7.475$ gallons $=28.316$ liters
1 gallon $=4$ quarts

Pressure

SI Base Unit: Pascal (Pa)
1 pascal $=\frac{\mathrm{kg}}{\mathrm{m} \mathrm{s}^{2}}=1$ Newton $/ \mathrm{m}^{2}$
1 atmosphere $=760$ torr
$=760$ millimeters of mercury
$=1.01325 \times 10^{5}$ pascals $=1.01325 \mathrm{bar}$
$=14.70$ pounds per square inch
1 torr $=1$ millimeter of mercury

Length

SI Base Unit: Meter (m)
1 inch $=2.54$ centimeters (exactly)
1 meter $=100$ centimeters $=39.37$ inches
1 yard $=0.9144$ meter
1 mile $=1.609$ kilometers
1 kilometer $=1000$ meters $=0.6215$ mile
1 Ångstrom $=1.0 \times 1,0^{-10}$ meters $=1.0 \times 10^{-8}$ centimeters

Energy

SI Base Unit: Joule (J)

$$
\begin{aligned}
1 \text { calorie } & =4.184 \text { joules }=4.129 \times 10^{-2} \mathrm{~L} \text { atm } \\
1 \text { joule } & =1 \frac{\mathrm{~kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}}=0.23901 \text { calorie } \\
1 \text { joule } & =1 \times 10^{7} \mathrm{ergs} \\
1 \text { electron volt } & =1.6022 \times 10^{-19} \text { joule } \\
1 \text { electron volt } & =96.485 \mathrm{~kJ} / \mathrm{mol} \\
1 \mathrm{~L} \mathrm{~atm} & =24.217 \text { calories }=101.325 \text { joules }
\end{aligned}
$$

Temperature

SI Base Unit: Kelvin (K)

$$
\begin{aligned}
0 \mathrm{~K} & =-273.15^{\circ} \mathrm{C} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273.15^{\circ} \\
{ }^{\circ} \mathrm{F} & =1.8\left({ }^{\circ} \mathrm{C}\right)+32^{\circ} \\
{ }^{\circ} \mathrm{C} & =\frac{{ }^{\circ} \mathrm{F}-32^{\circ}}{1.8^{\circ}}
\end{aligned}
$$

