CHS 1440-0001 Exam **3** version **A**

Fall Semester, Nov. 2021 A UCF ID is required.

On your pink TEST FORM, write your correct Name and the Date.

Shade in the following: correct **PID**; <u>test version (form</u>). Your grade cannot be posted in webcourses if your PID or test form, or both, are incorrect or missing!

Use of a nonprogrammable (nongraphing) calculator is permitted, e.g., TI-30X series! No graphing calculators, nor cell phones. All other electronic devices should be properly stored away.

Read the questions and the answers carefully. Write/work on the test!

Choose the correct answer to each question. There are **20** *questions with* **5** *choices, a-e*!!

A periodic table is attached.

The useful constants and relationships are attached.

1. What's the packing efficiency of the body-centered cubic structure?

a) 52% b) 68% c) 74% d) 78.5% e) 90.7%

2. Choose the substance that corresponds to an n-type semiconductor

a) As doped with Sib) Si doped with Pc) Si doped with Ald) Sn doped with Gae) P doped with Ge

3. What is the net number of atoms in the face-centered cubic unit cell adopted by a metal?

a) 1 b) 2 c) 4 d) 9 e) 14

4. The allotropes of carbon are

a) CO₂; CO; C
b) diamond; graphite; fullerene
c) ¹²C; ¹³C; ¹⁴C
d) CO₂; graphite; ¹²C
e) C; Si; Ge; Sn; Pb

5. Which type(s) of intermolecular forces need to be overcome to convert methanol (CH₃F) from liquids to gases?

i. dispersion; ii. dipole-dipole; iii) H-bonding

a) i only b) ii only c) iii only d) i and ii; e) all of them

6. In assembling a Lewis Dot diagram of NO₃⁻, there are _____ total electrons to use in the model.

- a) 23 b) 24 c) 30 d) 31 e) 32
- 7. Predict the decreasing order of vapor pressure for the following compounds

i) FCH₂CH₂OH; ii) FCH₂CH₂F; iii) HOCH₂CH₂OH

- a) i > ii > iii b) i > iii > ii c) ii > iii d) ii > iii > i e) iii > ii > ii
- 8. Select the correct statement when comparing the properties of acetone [(CH₃)₂CO] with those of water (H₂O)
 - a) Water and acetone have the same vapor pressure.
 - b) Water has a lower boiling point.
 - c) Acetone has a higher surface tension, since it is heavier.
 - d) Water has a higher surface tension.
 - e) Acetone has a lower vapor pressure, because it has a larger molar mass.
- 9. Calculate ΔE for the system in which 15 J of work is done on a gas by the surroundings and the gas absorbs 35 J of heat?

a) -50 J b) -20 J c) +20 J d) +35 J e) +50 J

10. If the temperature of the surroundings increases due to a reaction happening within the system, then the reaction is

a) Exothermic

- b) Endothermic
- c) Both endothermic and exothermic
- d) Neither endothermic nor exothermic
- e) Not enough information to determine
- 11. The heat of fusion of pure silicon is 43.4 kJ/mol. How much energy is needed to melt a 1616.0 g-sample of silicon at its melting point of 1693 K?

a) 8.10 kJ b) 28.1 kJ c) 1.98 kJ d) 4.30 kJ e) 24.7 kJ

12. Copper wires used to transport electrical current heat up because of the resistance in the wire. If a 14 g wire gains 52.7 J of heat, what is the temperature change of the wire in Celsius degree? Specific heat of $Cu = 0.384 \text{ J/g}^{\circ}C$

a) 39 °C b) 14 °C c) 9.8 °C d) 5.2 °C e) 1.1 °C

13. Using these two equations,

 $\begin{array}{ll} C_{(\text{graphite})} + \text{PbO}_{(\text{s})} \rightarrow \text{Pb}(\text{s}) + \text{CO}(\text{g}) & \Delta H^{\circ} = 106.8 \text{ kJ} \\ 2C_{(\text{graphite})} + O_2(\text{g}) \rightarrow 2\text{CO}(\text{g}) & \Delta H^{\circ} = -221.0 \text{ kJ} \end{array}$

find the standard enthalpy change for the formation of 1 mol PbO(s) from lead metal and oxygen gas.

$$Pb(s) + \frac{1}{2}O_2(g) \rightarrow PbO_{(s)} \qquad \Delta H^\circ = ?$$

a)
$$+327 \text{ kJ}$$
 b) $+262 \text{ kJ}$ c) 0.99 kJ d) -217.3 kJ e) -262 kJ

14. How much heat is produced if 22.2 g of propane (C₈H₁₈) is combusted according to the following reaction?

$$2 C_8 H_{18}(g) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(1)$$
 $\Delta H = -5471 \text{ kJ}$

a) 531 kJ b) 5471 kJ c) 24600 kJ d) 49300 kJ e) 60730 kJ

15. Use provided data to find the heat of combustion of one mole of propane, C₃H₈, to form gaseous carbon dioxide and liquid water.

$$C_{3}H_{8}(g) + 5 O_{2}(g) \rightarrow 3 CO_{2}(g) + 4 H_{2}O(l)$$

 $\Delta H_{f}^{0}[C_{3}H_{8}(g)] = -103.8 \text{ kJ/mol}, \Delta H_{f}^{0}[CO_{2}(g)] = -393.5 \text{ kJ/mol}, \Delta H_{f}^{0}[H_{2}O(l)] = -285.8 \text{ kJ/mol}$

a) -2219.9 kJ b) -575.5 kJ c) 0.0 kJ d) +575.5 kJ e) +2219.9 kJ

16. Which bond is likely to be nonpolar?

a) C-H b) N-H c) O-H d) F-H e) F-F

17. Which compound has the smallest lattice energy.

a) LiF b) NaF c) KF d) RbF e) CsF

18. Select the bond below that is the strongest.

a) C-C b) C=C c) C-N d) C=N e) C=N

19. Which of the following compounds illustrates sp³ hybridization?

a) C_2H_4 b) BeF_2 c) CF_4 d) V_2O_5 e) SO_2

20. Which of the following molecule(s) has(have) a square pyramidal geometry?

BrF₅ SF₄ PCl₅

a) BrF5, SF4, PCl5	b) BrF5, SF4	c) BrF5
d) SF ₄	e) PCl ₅	

End.....

		7	6	Сī	4	ω	2	_	
5	Francium	87 Fr 223	55 CS 132.9055 Caesium	37 Rb 85.4678 Rubidium	19 K 39.0983 Potassium	Na 22.9898 Sodium	3 Li 6.941 Lithium	1 H 1.0079 Hydrogen	_
Lanthanide	Radium	Ra Ra	56 Ba 137.327 Barium	38 Sr ^{87.62} Strontium	20 Ca 40.078 Calcium	12 Mg 24.3050 Magnesium	4 Be 9.0122 Beryllium		2
57 La		89	57 71	39 Y 88.9059 Yttrium	21 SC 44.9559 Scandium				ω
Ce	Rutherfordium	104 Rf 267	72 Hf 178.49 Hafnium	40 Zr 91.224 Zirconium	22 Ti 47.87 Titanium				4
⁵⁹ Pr	Dubnium	105 Db	73 Ta 180.9479 Tantalum	41 Nb 92.9064 Niobium	23 V 50.9415 Vanadium			Atomic	Сī
PN °	Seaborgium	Sg	74 W 183.84 Tungsten	42 MO 95.96 Molybdenum	24 Cr 51.9961 Chromium		Symbol -	Atomic Number →	6
ឹ Pm	Bohrium	107 Bh 270	75 Re 186.207 Rhenium	43 TC 98 Technetium	25 Mn 54.9380 Manganese	Ну		–	7
s ۳	Hassium	108 HS	76 OS 190.2 Osmium	44 Ru 101.07 Ruthenium	26 Fe 55.85 Iron	Hydrogen ←	1.008 ⊥		8
Е С	Meitnerium	109 Mt 278	77 r 192.22 Iridium	45 Rh 102.9055 Rhodium	27 Co 58.9332 Cobalt	↓ Name			9
Gd	Darmstadtium	110 DS 281	78 Pt 195.08 Platinum	46 Pd 106.42 Palladium	28 Ni 58.6934 Nickel	ወ	Atomic Mass		10
55 Tb	Roentgenium	nn Rg	79 Au 196.9665 Gold	47 Ag 107.8682 Silver	29 Cu 63.546 Copper				11
‰ کړ	Copernicium Ununtrium	112 Cn 285	80 Hg 200.59 Mercury	48 Cd 112.411 Cadmium	30 Zn 65.38 Zinc				12
⁶⁷ Ho	Ununtrium	Uut	81 T 204.3833 Thallium	49 In 114.82 Indium	31 Ga 69.723 Gallium	13 Al 26.9815 Aluminium	5 B 10.811 Boron		13
Er "	Flerovium	114 F 289	82 Pb 207.2 Lead	50 Sn 118,710 Tin	32 Ge 72.64 Germanium	14 Si 28.0855 Silicon	6 C 12.011 Carbon		14
۳ Tm	Ununpentium	Uup	83 Bi 208.9804 Bismuth	51 Sb 121.76 Antimony	33 Ас 74.9216 Arsenic	15 P 30.9738 Phosphorus	r N 14.0067 Nitrogen		15
۳ ۷b	Livermorium	116 LV 293	Polonium	52 Te 127.60 Tellurium	34 Se 78.96 Selenium	16 S 32.065 Sulfur	8 0 15.9994 Oxygen		16
⁷¹ Lu	Ununseptium	Uus	At At Astatine	53 126.9045 odine	35 Br 79.904 Bromine	17 Cl 35.453 Chlorine	9 F 18.9984 Fluorine		17
	Ununoctium	118 Uuo 294	Rn Rn 222 Radon	54 Xe 131.29 Xenon	36 Kr 83.80 Krypton	18 Ar 39.948 Argon	10 Ne 20.1797 Neon	2 He 4.0026 Helium	18

Actinide	Lanthanide
Series	Series
AC AC Actinium	57 La 138.9055 Lanthanum
90	58
Th	Ce
232.0381	140.116
Thorium	Cerium
91	59
Pa	Pr
231.0359	140.9076
Protactinium	Praseodymium
92 U 238.0289 Uranium	Neodymium
93 Np ²³⁷ Neptunium	Pm 145 Promethium
94	62
Pu	Sm
244	150.36
Plutonium	Samarium
95	63
Am	Eu
243	151.964
Americium	Europium
See	GA
CM	Gd
247	157.25
Curium	Gadolinium
97	65
Bk	Tb
247	158.9253
Berkelium	Terbium
98	be
Cf	Dy
²⁵¹	162.50
Californium	Dysprosium
99	67
ES	HO
252	164.9303
Einsteinium	Holmium
100	68
Fm	Er
²⁵⁷	167.26
Fermium	Erbium
non	69
Md	Tm
258	168.9342
Mendelevium	Thulium
Nobelium	70 Yb 173.054 Ytterbium
103	TI
Lr	LU
262	174.967
Lawrencium	Lutetium

SOME USEFUL CONSTANTS

(a more complete list appears in Appendix B)

Atomic mass unit Avogadro's number Electronic charge Faraday constant

Gas constant

Pi Planck's constant Speed of light (in vacuum) 1 amu = 1.6606×10^{-24} g $N = 6.02214179 \times 10^{23}$ particles/mol $e = 1.60218 \times 10^{-19}$ coulombs F = 96,485.3399 coulombs/mol $e^ R = 0.08206 \frac{\text{L atm}}{\text{mol K}} = 1.987 \frac{\text{cal}}{\text{mol K}}$ $= 8.314472 \frac{\text{J}}{\text{mol K}} = 8.314472 \frac{\text{kPa dm}^3}{\text{mol K}}$ $\pi = 3.1415927$ $h = 6.62606896 \times 10^{-34}$ J s $c = 2.99792458 \times 10^8$ m/s

SOME USEFUL RELATIONSHIPS

Mass and Weight

SI Base Unit: Kilogram (kg)

1 kilogram = 1000 grams = 2.205 pounds 1 gram = 1000 milligrams 1 pound = 453.59 grams 1 amu = 1.6606 × 10⁻²⁴ grams 1 gram = 6.022 × 10²³ amu

1 ton = 2000 pounds

Volume

SI Base Unit: Cubic Meter (m³)

1 liter = 0.001 cubic meter 1 liter = 1000 cubic centimeters = 1000 mL 1 liter = 1.056 quarts 1 quart = 0.9463 liter 1 milliliter = 0.001 liter = 1 cubic centimeter cubic foot = 7.475 gallons = 28.316 liters 1 gallon = 4 quarts

Pressure

SI Base Unit: Pascal (Pa)

 $1 \text{ pascal} = \frac{\text{kg}}{\text{m s}^2} = 1 \text{ Newton/m}^2$ 1 atmosphere = 760 torr = 760 millimeters of mercury = 1.01325 × 10⁵ pascals = 1.01325 bar = 14.70 pounds per square inch

1 torr = 1 millimeter of mercury

Length

SI Base Unit: Meter (m)

- 1 inch = 2.54 centimeters (exactly) 1 meter = 100 centimeters = 39.37 inches
 - 1 yard = 0.9144 meter
 - 1 mile = 1.609 kilometers
- 1 kilometer = 1000 meters = 0.6215 mile 1 Ångstrom = 1.0×10^{-10} meters = 1.0×10^{-8} centimeters

Energy

SI Base Unit: Joule (J)

1 calorie = 4.184 joules = 4.129×10^{-2} L atm 1 joule = $1 \frac{\text{kg m}^2}{\text{s}^2} = 0.23901$ calorie 1 joule = 1×10^7 ergs 1 electron volt = 1.6022×10^{-19} joule 1 electron volt = 96.485 kJ/mol 1 L atm = 24.217 calories = 101.325 joules

Temperature

SI Base Unit: Kelvin (K)

 $\begin{array}{l} 0 \ \mathrm{K} = -273.15^{\circ}\mathrm{C} \\ \mathrm{K} = ^{\circ}\mathrm{C} + 273.15^{\circ} \\ ^{\circ}\mathrm{F} = 1.8(^{\circ}\mathrm{C}) + 32^{\circ} \\ ^{\circ}\mathrm{C} = \frac{^{\circ}\mathrm{F} - 32^{\circ}}{1.8^{\circ}} \end{array}$