CHS 1440-0001
Exam $\mathbf{3}$ version \mathbf{A}
Fall Semester, Nov. 2021
A UCF ID is required.
On your pink TEST FORM, write your correct Name and the Date.
Shade in the following: correct PID; test version (form). Your grade cannot be posted in webcourses if your PID or test form, or both, are incorrect or missing!

Use of a nonprogrammable (nongraphing) calculator is permitted, e.g., TI-30X series! No graphing calculators, nor cell phones. All other electronic devices should be properly stored away.

Read the questions and the answers carefully. Write/work on the test!
Choose the correct answer to each question. There are 20 questions with 5 choices, a-e!!

A periodic table is attached.
The useful constants and relationships are attached.

1. What's the packing efficiency of the body-centered cubic structure?
a) 52%
b) 68%
c) 74%
d) 78.5%
e) 90.7%
2. Choose the substance that corresponds to an n-type semiconductor
a) As doped with Si
b) Si doped with P
c) Si doped with Al
d) Sn doped with Ga
e) P doped with Ge
3. What is the net number of atoms in the face-centered cubic unit cell adopted by a metal?
a) 1
b) 2
c) 4
d) 9
e) 14
4. The allotropes of carbon are
a) CO_{2}; $\mathrm{CO} ; \mathrm{C}$
b) diamond; graphite; fullerene
c) ${ }^{12} \mathrm{C} ;{ }^{13} \mathrm{C} ;{ }^{14} \mathrm{C}$
d) CO_{2}; graphite; ${ }^{12} \mathrm{C}$
e) $\mathrm{C} ; \mathrm{Si} ; \mathrm{Ge} ; \mathrm{Sn} ; \mathrm{Pb}$
5. Which type(s) of intermolecular forces need to be overcome to convert methanol $\left(\mathrm{CH}_{3} \mathrm{~F}\right)$ from liquids to gases?
i. dispersion; ii. dipole-dipole; iii) H-bonding
a) i only
b) ii only
c) iii only
d) i and ii;
e) all of them
6. In assembling a Lewis Dot diagram of $\mathrm{NO}_{3}{ }^{-}$, there are \qquad total electrons to use in the model.
a) 23
b) 24
c) 30
d) 31
e) 32
7. Predict the decreasing order of vapor pressure for the following compounds
i) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$;
ii) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{~F}$;
iii) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
a) i $>$ ii $>$ iii
b) i $>$ iii $>$ ii
c) ii $>$ i $>$ iii
d) ii $>$ iii $>$ i
e) iii $>$ ii $>$ i
8. Select the correct statement when comparing the properties of acetone $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]$ with those of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
a) Water and acetone have the same vapor pressure.
b) Water has a lower boiling point.
c) Acetone has a higher surface tension, since it is heavier.
d) Water has a higher surface tension.
e) Acetone has a lower vapor pressure, because it has a larger molar mass.
9. Calculate ΔE for the system in which 15 J of work is done on a gas by the surroundings and the gas absorbs 35 J of heat?
a) -50 J
b) -20 J
c) +20 J
d) +35 J
e) +50 J
10. If the temperature of the surroundings increases due to a reaction happening within the system, then the reaction is
a) Exothermic
b) Endothermic
c) Both endothermic and exothermic
d) Neither endothermic nor exothermic
e) Not enough information to determine
11. The heat of fusion of pure silicon is $43.4 \mathrm{~kJ} / \mathrm{mol}$. How much energy is needed to melt a 1616.0 g -sample of silicon at its melting point of 1693 K ?
a) 8.10 kJ
b) 28.1 kJ
c) 1.98 kJ
d) 4.30 kJ
e) 24.7 kJ
12. Copper wires used to transport electrical current heat up because of the resistance in the wire. If a 14 g wire gains 52.7 J of heat, what is the temperature change of the wire in Celsius degree? Specific heat of $\mathrm{Cu}=0.384 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
a) $39{ }^{\circ} \mathrm{C}$
b) $14{ }^{\circ} \mathrm{C}$
c) $9.8^{\circ} \mathrm{C}$
d) $5.2^{\circ} \mathrm{C}$
e) $1.1^{\circ} \mathrm{C}$
13. Using these two equations,

$$
\begin{array}{ll}
\mathrm{C}_{(\text {graphite })}+\mathrm{PbO}_{(\mathrm{s})} \rightarrow \mathrm{Pb}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) & \Delta H^{\circ}=106.8 \mathrm{~kJ} \\
2 \mathrm{C}_{\text {(graphite) }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{~g}) & \Delta H^{\circ}=-221.0 \mathrm{~kJ}
\end{array}
$$

find the standard enthalpy change for the formation of $1 \mathrm{~mol} \mathrm{PbO}(\mathrm{s})$ from lead metal and oxygen gas.

$$
\mathrm{Pb}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{PbO}_{(\mathrm{s})} \quad \Delta H^{\circ}=?
$$

a) +327 kJ
b) +262 kJ
c) 0.99 kJ
d) -217.3 kJ
e) -262 kJ
14. How much heat is produced if 22.2 g of propane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is combusted according to the following reaction?

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-5471 \mathrm{~kJ}
$$

a) 531 kJ
b) 5471 kJ
c) 24600 kJ
d) 49300 kJ
e) 60730 kJ
15. Use provided data to find the heat of combustion of one mole of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, to form gaseous carbon dioxide and liquid water.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(l)
$$

$\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}\left[\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})\right]=-103.8 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}}^{0}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}}^{0}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$
a) -2219.9 kJ
b) -575.5 kJ
c) 0.0 kJ
d) +575.5 kJ
e) +2219.9 kJ
16. Which bond is likely to be nonpolar?
a) $\mathrm{C}-\mathrm{H}$
b) $\mathrm{N}-\mathrm{H}$
c) $\mathrm{O}-\mathrm{H}$
d) F-H
e) F-F
17. Which compound has the smallest lattice energy.
a) LiF
b) NaF
c) KF
d) RbF
e) CsF
18. Select the bond below that is the strongest.
a) $\mathrm{C}-\mathrm{C}$
b) $\mathrm{C}=\mathrm{C}$
c) $\mathrm{C}-\mathrm{N}$
d) $\mathrm{C}=\mathrm{N}$
e) $\mathrm{C} \equiv \mathrm{N}$
19. Which of the following compounds illustrates sp^{3} hybridization?
a) $\mathrm{C}_{2} \mathrm{H}_{4}$
b) BeF_{2}
c) CF_{4}
d) $\mathrm{V}_{2} \mathrm{O}_{5}$
e) SO_{2}
20. Which of the following molecule(s) has(have) a square pyramidal geometry?
$\mathrm{BrF}_{5} \quad \mathrm{SF}_{4} \quad \mathrm{PCl}_{5}$
a) $\mathrm{BrF}_{5}, \mathrm{SF}_{4}, \mathrm{PCl}_{5}$
b) $\mathrm{BrF}_{5}, \mathrm{SF}_{4}$
c) BrF_{5}
d) SF_{4}
e) PCl_{5}

End......

		$\begin{gathered} \text { unligo } \\ \text { Sis } \\ \mathrm{ON}_{7} \end{gathered}$	(tation	m_{J}									(e)		${ }^{\text {unnupu }}$	รว!!อร 	
						$\underbrace{\substack{\text { unsis.cssad } \\ \text { oscrat }}}_{99}$						${ }^{\text {cinnurposn }}$				spups apiue	
$\underset{81}{ } \mathrm{On}_{1}$	$\operatorname{sn}_{\mathrm{Lu}}$	$\begin{gathered} \text { nnuoumann } \\ \wedge 67 \\ \hline 962 \\ \hline \end{gathered}$	$\mathrm{dn}_{\mathrm{stl}}^{68 \mathrm{c}}$			$\underset{\text { zit }}{\substack{\text { unpuwado } \\ \text { sig }}}$						K_{901}			801/68		
$\begin{aligned} & \hline \text { uppeq } \\ & \text { urz } \\ & \text { uy } \\ & \hline 98 \end{aligned}$		$\begin{array}{\|c} \hline \text { unnuovod } \\ \mathrm{O}_{02} \\ \mathrm{O}_{\text {t8 }} \end{array}$	$\begin{gathered} \hline \text { ynnusig } \\ \text { toxe } 8802 \\ !9_{88} \end{gathered}$	$\begin{aligned} & \hline \text { pepo } \\ & \text { peove } \\ & \mathrm{qd}_{\mathrm{z8}} \end{aligned}$	$\begin{gathered} \hline \text { unnivel } \\ \text { Enerictor } \\ \mid \perp_{18} \end{gathered}$					$\begin{aligned} & \text { unnuso } \\ & \begin{array}{c} \text { roco } \\ \mathrm{SO}_{9} \end{array} \\ & \hline \end{aligned}$					LL/LS		
	$\begin{gathered} \begin{array}{c} \text { julucurg } \\ \text { tucicic } \\ 1 g_{s \varepsilon} \end{array} \end{gathered}$																
$\begin{aligned} & \hline 10610 \\ & 88668 \\ & 1 \forall 8 \\ & 81 \end{aligned}$									N	иәбо1	H						
		(1abko		(yoquer	${ }_{\substack{40108 \\ 118801 \\ 8 \\ 5}}$			W	O+V	800		ques					
OH_{2}												quin	!uouv				
81	$\angle 1$	91	¢ı	$\dagger 1$	$\varepsilon 1$	21	11	01	6	8	\angle	9	¢	\dagger	ε	乙	1

SOME USEFUL CONSTANTS

SOME USEFUL RELATIONSHIPS

Mass and Weight
SI Base Unit: Kilogram (kg)
1 kilogram $=1000$ grams $=2.205$ pounds
1 gram $=1000$ milligrams
1 pound $=453.59$ grams
1 amu $=1.6606 \times 10^{-24}$ grams
1 gram $=6.022 \times 10^{23}$ amiut
1 ton $=2000$ pounds
Volume
SI Base Unit: Cubic Meter $\left(\mathrm{m}^{3}\right)$
1 liter $=0.001$ cubic meter
1 liter $=1000$ cubic centimeters $=1000 \mathrm{~mL}$
1 liter $=1.056$ quarts
1 quart $=0.9463$ liter
1 milliliter $=0.001$ liter $=1$ cubic centimeter
cubic foot $=7.475$ gallons $=28.316$ liters
1 gallon $=4$ quarts

Pressure

SI Base Unit: Pascal (Pa)
1 pascal $=\frac{\mathrm{kg}}{\mathrm{m} \mathrm{s}^{2}}=1$ Newton $/ \mathrm{m}^{2}$
1 atmosphere $=760$ torr
$=760$ millimeters of mercury
$=1.01325 \times 10^{5}$ pascals
$=1.01325 \mathrm{bar}$
$=14.70$ pounds per square inch
1 torr $=1$ millimeter of mercury

Length

SI Base Unit: Meter (m)

1 inch $=2.54$ centimeters (exactly)
1 meter $=100$ centimeters $=39.37$ inches
1 yard $=0.9144$ meter
1 mile $=1.609$ kilometers
1 kilometer $=1000$ meters $=0.6215$ mile
1 Ångstrom $=1.0 \times 1.0^{-10}$ meters $=1.0 \times 10^{-8}$ centimeters

Energy

SI Base Unit: Joule (J)

$$
\begin{aligned}
1 \text { calorie } & =4.184 \text { joules }=4.129 \times 10^{-2} \mathrm{~L} \text { atm } \\
1 \text { joule } & =1 \frac{\mathrm{~kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}}=0.23901 \text { calorie } \\
1 \text { joule } & =1 \times 10^{7} \mathrm{ergs} \\
1 \text { electron volt } & =1.6022 \times 10^{-19} \text { joule } \\
1 \text { electron volt } & =96.485 \mathrm{~kJ} / \mathrm{mol} \\
1 \mathrm{~L} \mathrm{~atm} & =24.217 \text { calories }=101.325 \text { joules }
\end{aligned}
$$

Temperature

SI Base Unit: Kelvin (K)

$$
\begin{aligned}
0 \mathrm{~K} & =-273.15^{\circ} \mathrm{C} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273.15^{\circ} \\
{ }^{\circ} \mathrm{F} & =1.8\left({ }^{\circ} \mathrm{C}\right)+32^{\circ} \\
{ }^{\circ} \mathrm{C} & =\frac{{ }^{\circ} \mathrm{F}-32^{\circ}}{1.8^{\circ}}
\end{aligned}
$$

