CHS 1440-0001
Exam 2 version \mathbf{A}
Fall Semester, Oct. 2021
A UCF ID is required.
On your pink scantron, write your correct Name and the Date.
Shade in the following: correct UCFID; test version (form). Your grade cannot be posted in webcourses if your UCFID or test form, or both, are incorrect or missing!

Use of a nonprogrammable (nongraphing) calculator is permitted, e.g., TI-30X series! No graphing calculators, nor cell phones. All other electronic devices should be properly stored away.

Read the questions and the answers carefully. Write/work on the test!
Choose the correct answer to each question. There are total 20 questions with 5 choices, $a-e!$!

A periodic table is attached.
The useful constants and relationships are attached.
The atomic size table is attached.

1. Which of the following relationships are true for gases?
i) The number of moles of a gas is directly proportional to its volume (at constant pressure and temperature).
ii) The pressure of a gas is directly proportional to its temperature in kelvins (at constant volume).
iii) The volume of a gas is directly proportional to its pressure (at constant temperature).
a) i only
b) ii only
c) iii only
d) i and ii
e) all of them
2. A mixture of H_{2} and N_{2} is placed in a 5.00 L flask at $25^{\circ} \mathrm{C}$. The partial pressure of the H_{2} is 1.6 atm and the partial pressure of the N_{2} is 3.4 atm . What is the mole fraction of H_{2} ?
a) 0.68
b) 0.4
c) 0.32
d) 3.4
e) 1.6
3. If 3.2 L of CO_{2} is contained at a pressure of 1.08 atm , the gas will have a pressure of \qquad if the volume is increased to 5.1 L at a constant temperature.
a) 0.68 atm
b) 1.7 atm
c) 1.08 atm
d) 3.2 atm
e) 5.1 atm
4. What volume of O_{2}, measured at STP condition (1 atm and $0^{\circ} \mathrm{C}$), will be produced by the decomposition of 37.0 g KClO 3 ? $\left(\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

a) 6.77 L
b) 1.22 L
c) 10.1 L
d) 20.3 L
e) 15.4 L
5. Which of the followings are generally true of gases?

1) Gases expand to fill the volume of a container.
2) Gas particles do not collide with each other.
3) Gases have lower densities than solids or liquids.
4) Lighter gas particles tend to move faster at the same temperature.
5) At a fixed temperature, as pressure increases, average speed increases.
a) 1, 3 and 4
b) 2, 3 and 4
c) 1, 3 and 5
d) 1 and 3
e) 2 and 5
6. The ideal gas law begins to break down:
1) at high temperatures
2) at low temperatures
3) at high pressures
4) at low pressures
5) at low volume
a) 1 and 3
b) 1 and 4
c) 2 and 3
d) 2 and 4
e) 5
7. If a hydrogen atom undergoes a transition from $n=1\left(E=4.17 \times 10^{-19} \mathrm{~J}\right)$ to $\mathrm{n}=3(\mathrm{E}=8.62 \times$ $10^{-19} \mathrm{~J}$, what is the wavelength of the photon absorbed?
a) 446 nm
b) 476 nm
c) 230 nm
d) 155 nm
e) 892 nm
8. If $\mathrm{n}=4$, there are \qquad orbitals to fill in that shell.
a) 2
b) 4
c) 8
d) 16
e) 32
9. How many moles of an ideal gas are present in a 50.6 L sample at $35^{\circ} \mathrm{C}$ and 875 torr?
a) 1.95 mol
b) 2.30 mol
c) 4.63 mol
d) 8.45 mol
e) 13.6 mol
10. How many valence electrons are in Arsenic?
a) 3
b) 4
c) 5
d) 6
e) 7
11. Which of the following represents a valid set of quantum numbers?
a) $n=4, l=-3, m_{l}=3$,
b) $n=2, l=2, m_{l}=2$,
c) $n=0, l=0, m_{l}=0$,
d) $n=4, l=3, m_{l}=-3$
e) $n=3, l=4, m_{l}=3$
12. Which element has the electron configuration [Ar] $4 s^{2} 3 d^{7}$?
a) Zn
b) Co
c) Ga
d) Ag
e) Cu
13. The following reaction illustrates the reaction of methanol with oxygen to form carbon dioxide and water:
$2 \mathrm{CH}_{3} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)$
How many moles of water are produced in a reaction of 15 moles of methanol with 30 moles of oxygen?
a) 15
b) 20
c) 30
d) 40
e) 50
14. If the binding energy of an electron is $6.41 \times 10^{-19} \mathrm{~J}$, what wavelength of the photon is required to liberate it from the atom?
a) 155 nm
b) 310 nm
c) 620 nm
d) 641 nm
e) 768 nm
15. Which one is the correct ranking of the ionization energy?
a) $\mathrm{K}<\mathrm{Ge}<\mathrm{S}<\mathrm{Se}$
b) $\mathrm{Ge}<\mathrm{K}<\mathrm{Se}<\mathrm{S}$
c) $\mathrm{K}<\mathrm{Ge}<\mathrm{Se}<\mathrm{S}$
d) S $<\mathrm{Se}<\mathrm{Ge}<\mathrm{K}$
e) $\mathrm{K}<\mathrm{Se}<\mathrm{Ge}<\mathrm{S}$
16. The titration of 25.00 mL of 0.2215 M HCl required 28.84 mL of NaOH for neutralization. What is the molarity of the NaOH ?
a) 0.2215 M
b) 0.2555 M
c) 0.1920 M
d) 4.004 M
e) 0.03255 M
17. If 15.00 mL of a 1.00 M HCl solution is mixed with 25.00 mL of a 0.250 M NaOH solution in a process that produces 273 mg of NaCl , what is the percent yield?
a) 19.8%
b) 37.7%
c) 60.0%
d) 74.7%
e) 100%
18. Which is the general formula of alkanes?
a) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}$
b) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$
d) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
e) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
19. If 3.5 moles of each of these compounds are burned completely in O_{2}, which will produce the largest amount of CO_{2} ?
a) $\mathrm{C}_{3} \mathrm{H}_{8}$
b) $\mathrm{C}_{2} \mathrm{H}_{6}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
d) $\mathrm{C}_{4} \mathrm{H}_{8}$
e) $\mathrm{C}_{6} \mathrm{H}_{6}$
20. What's the purpose of an indicator in a titration?
a) It helps produce the desired product in the reaction
b) Changes color to indicate when the reaction is complete
c) To make the solution pretty
d) As a reactant
e) As a catalyst

End......

		$\begin{gathered} \text { unligo } \\ \text { Sis } \\ \mathrm{ON}_{7} \end{gathered}$	(tation	m_{J}											${ }^{\text {unnupu }}$	รว!!อร 	
						$\underbrace{\substack{\text { unsis.cssad } \\ \text { oscrat }}}_{99}$						${ }^{\text {cinnurposn }}$				spups apiue	
$\underset{81}{ } \mathrm{On}_{1}$	$\operatorname{sn}_{\mathrm{Lu}}$	$\begin{gathered} \text { nnuoumann } \\ \wedge 67 \\ \hline 962 \\ \hline \end{gathered}$	$\mathrm{dn}_{\mathrm{stl}}^{68 \mathrm{n}}$			$\underset{\text { zit }}{\substack{\text { unpuwado } \\ \text { sig }}}$						K_{901}			801/68		
$\begin{aligned} & \hline \text { uppeq } \\ & \text { urz } \\ & \text { uy } \\ & \hline 98 \end{aligned}$		$\begin{array}{\|c} \hline \text { unnuovod } \\ \mathrm{O}_{02} \\ \mathrm{O}_{\text {t8 }} \end{array}$	$\begin{gathered} \hline \text { ynnusig } \\ \text { toxe } 8802 \\ !9_{88} \end{gathered}$	$\begin{aligned} & \hline \text { pepo } \\ & \text { peove } \\ & \mathrm{qd}_{\mathrm{z8}} \end{aligned}$	$\begin{gathered} \hline \text { unnivel } \\ \text { Enerictor } \\ \mid \perp_{18} \end{gathered}$					$\begin{aligned} & \text { unnuso } \\ & \begin{array}{c} \text { roco } \\ \mathrm{SO}_{9} \end{array} \\ & \hline \end{aligned}$					LL/LS		
	$\begin{gathered} \begin{array}{c} \text { julucurg } \\ \text { tucicic } \\ 1 g_{s \varepsilon} \end{array} \end{gathered}$												$\bigwedge_{\substack{\text { unipuen } \\ \text { sitbos }}}^{\substack{\text { und }}}$				
$\begin{aligned} & \hline 10610 \\ & 88668 \\ & 1 \forall 8 \\ & 81 \end{aligned}$									N	иәбо1	H						
		(1abko		(yoquer	${ }_{\substack{40108 \\ 118801 \\ 8 \\ 5}}$			W	O+V	800		ques					
OH_{2}												quin	mosy				
81	$\angle 1$	91	¢ı	$\dagger 1$	$\varepsilon 1$	21	11	01	6	8	\angle	9	¢	\dagger	ε	乙	1

SOME USEFUL CONSTANTS

SOME USEFUL RELATIONSHIPS

Mass and Weight
SI Base Unit: Kilogram (kg)
1 kilogram $=1000$ grams $=2.205$ pounds
1 gram $=1000$ milligrams
1 pound $=453.59$ grams
1 amu $=1.6606 \times 10^{-24}$ grams
1 gram $=6.022 \times 10^{23}$ amiut
1 ton $=2000$ pounds
Volume
SI Base Unit: Cubic Meter $\left(\mathrm{m}^{3}\right)$
1 liter $=0.001$ cubic meter
1 liter $=1000$ cubic centimeters $=1000 \mathrm{~mL}$
1 liter $=1.056$ quarts
1 quart $=0.9463$ liter
1 milliliter $=0.001$ liter $=1$ cubic centimeter
cubic foot $=7.475$ gallons $=28.316$ liters
1 gallon $=4$ quarts

Pressure

SI Base Unit: Pascal (Pa)
1 pascal $=\frac{\mathrm{kg}}{\mathrm{m} \mathrm{s}^{2}}=1$ Newton $/ \mathrm{m}^{2}$
1 atmosphere $=760$ torr
$=760$ millimeters of mercury
$=1.01325 \times 10^{5}$ pascals
$=1.01325 \mathrm{bar}$
$=14.70$ pounds per square inch
1 torr $=1$ millimeter of mercury

Length

SI Base Unit: Meter (m)

1 inch $=2.54$ centimeters (exactly)
1 meter $=100$ centimeters $=39.37$ inches
1 yard $=0.9144$ meter
1 mile $=1.609$ kilometers
1 kilometer $=1000$ meters $=0.6215$ mile
1 Ångstrom $=1.0 \times 1.0^{-10}$ meters $=1.0 \times 10^{-8}$ centimeters

Energy

SI Base Unit: Joule (J)

$$
\begin{aligned}
1 \text { calorie } & =4.184 \text { joules }=4.129 \times 10^{-2} \mathrm{~L} \text { atm } \\
1 \text { joule } & =1 \frac{\mathrm{~kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}}=0.23901 \text { calorie } \\
1 \text { joule } & =1 \times 10^{7} \mathrm{ergs} \\
1 \text { electron volt } & =1.6022 \times 10^{-19} \text { joule } \\
1 \text { electron volt } & =96.485 \mathrm{~kJ} / \mathrm{mol} \\
1 \mathrm{~L} \mathrm{~atm} & =24.217 \text { calories }=101.325 \text { joules }
\end{aligned}
$$

Temperature

SI Base Unit: Kelvin (K)

$$
\begin{aligned}
0 \mathrm{~K} & =-273.15^{\circ} \mathrm{C} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273.15^{\circ} \\
{ }^{\circ} \mathrm{F} & =1.8\left({ }^{\circ} \mathrm{C}\right)+32^{\circ} \\
{ }^{\circ} \mathrm{C} & =\frac{{ }^{\circ} \mathrm{F}-32^{\circ}}{1.8^{\circ}}
\end{aligned}
$$

