1. What's the packing efficiency of the face-centered cubic structure?
a) 52%
b) 68%
c) 74%
d) 78.5%
e) 90.7%
2. Choose the substance that corresponds to an n-type semiconductor
a) As doped with Si
b) Ge doped with As
c) Si doped with Al
d) Sn doped with Ga
e) P doped with Ge
3. What is the net number of atoms in the body-centered cubic unit cell adopted by a metal?
a) 1
b) 2
c) 4
d) 7
e) 14
4. The allotropes of carbon are
a) $\mathrm{CO}_{2} ; \mathrm{CO} ; \mathrm{CO}_{3}{ }^{2-}$
b) diamond; graphite; fullerene
c) ${ }^{12} \mathrm{C} ;{ }^{13} \mathrm{C} ;{ }^{14} \mathrm{C}$
d) CO_{2}; graphite; ${ }^{12} \mathrm{C}$
e) $\mathrm{C} ; \mathrm{Si} ; \mathrm{Ge} ; \mathrm{Sn} ; \mathrm{Pb}$
5. Which type(s) of intermolecular forces need to be overcome to convert methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ from liquids to gases?
i. dispersion; ii. dipole-dipole; iii) H-bonding
a) i only
b) ii only
c) iii only
d) i and ii;
e) all of them
6. In assembling a Lewis Dot diagram of $\mathrm{PO}_{4}{ }^{3-}$, there are \qquad total electrons to use in the model.
a) 50
b) 48
c) 40
d) 32
e) 29
7. Predict the decreasing order of vapor pressure for the following compounds
i) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$;
ii) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$;
iii) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
a) i $>$ ii $>$ iii
b) i $>$ iii $>$ ii
c) ii $>$ i $>$ iii
d) ii $>$ iii $>$ i
e) iii $>$ ii $>$ i
8. Select the correct statement when comparing the properties of acetone $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]$ with those of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
a) Water and acetone have the same vapor pressure.
b) Water has a lower boiling point.
c) Acetone has a higher surface tension, since it is heavier.
d) Water has a higher surface tension.
e) Acetone has a lower vapor pressure, because it has a larger molar mass.
9. Calculate ΔE for the system in which 16 J of work is done on a gas by the surroundings and the gas releases 51 J of heat?
a) -67 J
b) -35 J
c) +35 J
d) +51 J
e) +67 J
10. If the enthalpy of condensation, $\Delta \mathrm{H}_{\text {cond }}$, of a substance is $-4.07 \times 10^{4} \mathrm{~J} / \mathrm{mol}$, what is its enthalpy of vaporization, $\Delta \mathrm{H}_{\text {vap }}$?
a) $3 \times \Delta \mathrm{H}_{\text {cond }}$
b) $+4.07 \times 10^{4} \mathrm{~J} / \mathrm{mol}$
c) $-4.07 \times 10^{4} \mathrm{~J} / \mathrm{mol}$ divided by the molar mass of the substance
d) $+4.07 \times 10^{4} \mathrm{~J} / \mathrm{mol}$ multiplied by the molar mass of the substance
e) Cannot be determined from the information given
11. The heat of fusion of pure silicon is $43.4 \mathrm{~kJ} / \mathrm{mol}$. How much energy is needed to melt a 2.78 g-sample of silicon at its melting point of 1693 K ?
a) 8.10 kJ
b) 693 kJ
c) 1.98 kJ
d) 4.30 kJ
e) 28.1 kJ
12. Copper wires used to transport electrical current heat up because of the resistance in the wire. If a $140-\mathrm{g}$ wire gains 280 J of heat, what is the change in temperature of the wire? Specific heat of $\mathrm{Cu}=0.384 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
a) $39{ }^{\circ} \mathrm{C}$
b) $14{ }^{\circ} \mathrm{C}$
c) $9.8^{\circ} \mathrm{C}$
d) $5.2{ }^{\circ} \mathrm{C}$
e) $1.1^{\circ} \mathrm{C}$
13. Using these two equations,

$$
\begin{array}{ll}
\mathrm{C}_{(\text {graphite })}+\mathrm{PbO}_{(\mathrm{s})} \rightarrow \mathrm{Pb}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) & \Delta H^{\circ}=106.8 \mathrm{~kJ} \\
2 \mathrm{C}_{(\text {graphite })}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{~g}) & \Delta H^{\circ}=-221.0 \mathrm{~kJ}
\end{array}
$$

find the standard enthalpy change for the formation of $1 \mathrm{~mol} \mathrm{PbO}(\mathrm{s})$ from lead metal and oxygen gas.

$$
\mathrm{Pb}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{PbO}_{(\mathrm{s})} \quad \Delta H^{\circ}=?
$$

a) +327 kJ
b) +262 kJ
c) 0.99 kJ
d) -217.3 kJ
e) -262 kJ
14. For the reaction, how much energy is needed to generate 582 g of $\mathrm{NO}(\mathrm{g})$?

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) \quad \Delta \mathrm{H}=180.5 \mathrm{~kJ}
$$

a) $1.3 \times 10^{4} \mathrm{~kJ}$
b) 180.5 kJ
c) 1750 kJ
d) $9.7 \times 10^{3} \mathrm{~kJ}$
e) $3.2 \times 10^{3} \mathrm{~kJ}$
15. Use provided data to find the heat of combustion of one mole of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, to form gaseous carbon dioxide and liquid water.

$$
\begin{gathered}
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta \mathrm{H}_{\mathrm{f}}^{0}\left[\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})\right]=-103.8 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}}^{0}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}}^{0}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

a) -2219.9 kJ
b) -575.5 kJ
c) 0.0 kJ
d) +575.5 kJ
e) +2219.9 kJ
16. Which bond is likely to be the most polar?
a) $\mathrm{C}-\mathrm{H}$
b) $\mathrm{N}-\mathrm{H}$
c) $\mathrm{O}-\mathrm{H}$
d) $\mathrm{F}-\mathrm{H}$
e) F-F
17. Choose the compound below that should has the largest lattice energy.
a) KF
b) KCl
c) KBr
d) KI
e) KAt
18. Select the bond below that is the strongest.
a) C-C
b) $\mathrm{O}=\mathrm{O}$
c) $\mathrm{C}-\mathrm{O}$
d) $\mathrm{C}-\mathrm{N}$
e) $\mathrm{N} \equiv \mathrm{N}$
19. Which of the following compounds illustrates sp^{3} hybridization?
a) $\mathrm{C}_{2} \mathrm{H}_{4}$
b) BeF_{2}
c) CCl_{4}
d) $\mathrm{V}_{2} \mathrm{O}_{5}$
e) SO_{2}
20. Which of the following molecule(s) has(have) a trigonal bipyramidal geometry?
$\mathrm{BrF}_{5} \quad \mathrm{SF}_{4} \quad \mathrm{PCl}_{5}$
a) $\mathrm{BrF}_{5}, \mathrm{SF}_{4}, \mathrm{PCl}_{5}$
b) PCl_{5}
c) $\mathrm{BrF}_{5}, \mathrm{SF}_{4}$
d) SF_{4}
e) BrF_{5}

Answers:
1 (c), 2 (b), 3 (b), 4 (b), 5 (e), 6 (d), 7 (e), 8 (d), 9 (b), 10 (b), 11 (d), 12 (d), 13 (d), 14 (c), 15 (a), 16 (d), 17 (a), 18 (e), 19 (c), 20 (b)

																รวฺฺร әр!и! รวนวs әр!иецъи	
on_{81}	sn		$\mathrm{dn} \cap$		$\rightarrow \bigcap_{\varepsilon ı}^{982}$	$\substack{\text { unpluado } \\ \text { spr } \\ \text { U } \\ \text { zut }}$		$\begin{gathered} \text { cminpesesured } \\ \mathrm{SO}_{182} \\ \mathrm{SO} \end{gathered}$	$\begin{gathered} \substack{\text { unlualip } \\ \text { Bur } \\ 7 W \\ 601} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { unsser } \\ \mathrm{SH}_{92} \\ 801 \end{array}$	$\begin{gathered} \text { unnoug } \\ \text { oik } \\ 48 \\ 201 \end{gathered}$	6s	$\begin{gathered} \hline \begin{array}{c} \text { unuquan } \\ 892 \\ 90 \\ 901 \end{array} \\ \hline \end{gathered}$	(mpers	عOL/ 68		
$\begin{aligned} & \hline \text { uopeq } \\ & \text { uzz } \\ & \text { uy } \\ & \hline 98 \end{aligned}$							$\begin{gathered} \text { spo9 } \\ 599696 \\ \mathrm{n} \end{gathered} \forall_{6 L}$								LL/LS		
								${ }^{\text {cosen }}$		\|ot			(entigotv				
	$\begin{aligned} & \begin{array}{c} \text { julucurg } \\ \text { tucicic } \\ 1 g_{s \varepsilon} \end{array} \end{aligned}$																
$\begin{aligned} & \hline \hline \begin{array}{l} 106610 \\ 88668 \\ 1 \\ 1 \forall \\ 81 \end{array} \end{aligned}$									N	чәб๐1	H						
		((10qu12				ew	O+V	$800^{\circ} \mathrm{L}$		quxs					
$\begin{aligned} & \hline \left.\begin{array}{l} \text { unnion } \\ \text { arzoot } \\ \partial \mathrm{H}_{2} \end{array} \right\rvert\, \end{aligned}$											L	qumn	mory				
81	$\angle 1$	91	¢ı	$\dagger 1$	$\varepsilon 1$	てı	11	01	6	8	\angle	9	ऽ	\dagger	ε	乙	1

SOME USEFUL CONSTANTS

SOME USEFUL RELATIONSHIPS

Mass and Weight
SI Base Unit: Kilogram (kg)
1 kilogram $=1000$ grams $=2.205$ pounds
1 gram $=1000$ milligrams
1 pound $=453.59$ grams
1 amu $=1.6606 \times 10^{-24}$ grams
1 gram $=6.022 \times 10^{23}$ amiut
1 ton $=2000$ pounds
Volume
SI Base Unit: Cubic Meter $\left(\mathrm{m}^{3}\right)$
1 liter $=0.001$ cubic meter
1 liter $=1000$ cubic centimeters $=1000 \mathrm{~mL}$
1 liter $=1.056$ quarts
1 quart $=0.9463$ liter
1 milliliter $=0.001$ liter $=1$ cubic centimeter
cubic foot $=7.475$ gallons $=28.316$ liters
1 gallon $=4$ quarts

Pressure

SI Base Unit: Pascal (Pa)
1 pascal $=\frac{\mathrm{kg}}{\mathrm{m} \mathrm{s}^{2}}=1$ Newton $/ \mathrm{m}^{2}$
1 atmosphere $=760$ torr
$=760$ millimeters of mercury
$=1.01325 \times 10^{5}$ pascals
$=1.01325 \mathrm{bar}$
$=14.70$ pounds per square inch
1 torr $=1$ millimeter of mercury

Length

SI Base Unit: Meter (m)
1 inch $=2.54$ centimeters (exactly)
1 meter $=100$ centimeters $=39.37$ inches
1 yard $=0.9144$ meter
1 mile $=1.609$ kilometers
1 kilometer $=1000$ meters $=0.6215$ mile
1 Ångstrom $=1.0 \times 1,0^{-10}$ meters $=1.0 \times 10^{-8}$ centimeters
Energy
SI Base Unit: Joule (J)

$$
\begin{aligned}
1 \text { calorie } & =4.184 \text { joules }=4.129 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \\
1 \text { joule } & =1 \frac{\mathrm{~kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}}=0.23901 \text { calorie } \\
1 \text { joule } & =1 \times 10^{7} \mathrm{ergs} \\
1 \text { electron volt } & =1.6022 \times 10^{-19} \text { joule } \\
1 \text { electron volt } & =96.485 \mathrm{~kJ} / \mathrm{mol} \\
1 \mathrm{~L} \mathrm{~atm} & =24.217 \text { calories }=101.325 \text { joules }
\end{aligned}
$$

Temperature

SI Base Unit: Kelvin (K)

$$
\begin{aligned}
0 \mathrm{~K} & =-273.15^{\circ} \mathrm{C} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273.15^{\circ} \\
{ }^{\circ} \mathrm{F} & =1.8\left({ }^{\circ} \mathrm{C}\right)+32^{\circ} \\
{ }^{\circ} \mathrm{C} & =\frac{{ }^{\circ} \mathrm{F}-32^{\circ}}{1.8^{\circ}}
\end{aligned}
$$

