1. What's the packing efficiency of the face-centered cubic structure?

a) 52% b) 68% c) 74% d) 78.5% e) 90.7%

2. Choose the substance that corresponds to an n-type semiconductor

a) As doped with Sib) Ge doped with Asc) Si doped with Ald) Sn doped with Gae) P doped with Ge

3. What is the net number of atoms in the body-centered cubic unit cell adopted by a metal?

a) 1 b) 2 c) 4 d) 7 e) 14

4. The allotropes of carbon are

a) CO₂; CO; CO₃²⁻
b) diamond; graphite; fullerene
c) ¹²C; ¹³C; ¹⁴C
d) CO₂; graphite; ¹²C
e) C; Si; Ge; Sn; Pb

5. Which type(s) of intermolecular forces need to be overcome to convert methanol (CH₃OH) from liquids to gases?

i. dispersion; ii. dipole-dipole; iii) H-bonding

a) i only b) ii only c) iii only d) i and ii; e) all of them

6. In assembling a Lewis Dot diagram of PO_4^{3-} , there are _____ total electrons to use in the model.

a) 50 b) 48 c) 40 d) 32 e) 29

7. Predict the decreasing order of vapor pressure for the following compounds

i) HOCH₂CH₂OH; ii) FCH₂CH₂OH; iii) FCH₂CH₂F

a) i > ii > iii b) i > iii > iii c) ii > iii d) ii > iii > ii e) iii > ii > ii

- 8. Select the correct statement when comparing the properties of acetone [(CH₃)₂CO] with those of water (H₂O)
 - a) Water and acetone have the same vapor pressure.
 - b) Water has a lower boiling point.
 - c) Acetone has a higher surface tension, since it is heavier.
 - d) Water has a higher surface tension.
 - e) Acetone has a lower vapor pressure, because it has a larger molar mass.
- 9. Calculate ΔE for the system in which 16 J of work is done on a gas by the surroundings and the gas releases 51 J of heat?

a) -67 J b) -35 J c) +35 J d) +51 J e) +67 J

- 10. If the enthalpy of condensation, ΔH_{cond} , of a substance is -4.07×10^4 J/mol, what is its enthalpy of vaporization, ΔH_{vap} ?
 - a) $3 \times \Delta H_{cond}$ b) $+4.07 \times 10^4$ J/mol c) -4.07×10^4 J/mol divided by the molar mass of the substance d) $+4.07 \times 10^4$ J/mol multiplied by the molar mass of the substance e) Cannot be determined from the information given
- 11. The heat of fusion of pure silicon is 43.4 kJ/mol. How much energy is needed to melt a 2.78 g-sample of silicon at its melting point of 1693 K?

a) 8.10 kJ b) 693 kJ c) 1.98 kJ d) 4.30 kJ e) 28.1 kJ

12. Copper wires used to transport electrical current heat up because of the resistance in the wire. If a 140-g wire gains 280 J of heat, what is the change in temperature of the wire? Specific heat of $Cu = 0.384 \text{ J/g}^{\circ}C$

a) 39 °C b) 14 °C c) 9.8 °C d) 5.2 °C e) 1.1 °C

13. Using these two equations,

 $\begin{array}{ll} C_{(graphite)} + PbO_{(s)} \rightarrow Pb(s) + CO(g) & \Delta H^{\circ} = 106.8 \ kJ \\ 2C_{(graphite)} + O_2(g) \rightarrow 2CO(g) & \Delta H^{\circ} = -221.0 \ kJ \end{array}$ find the standard enthalpy change for the formation of 1 mol PbO(s) from lead metal and oxygen gas.

 $Pb(s) + \frac{1}{2}O_2(g) \rightarrow PbO_{(s)} \qquad \Delta H^\circ = ?$

a)
$$+327 \text{ kJ}$$
 b) $+262 \text{ kJ}$ c) 0.99 kJ d) -217.3 kJ e) -262 kJ

14. For the reaction, how much energy is needed to generate 582 g of NO(g)?

$$N_2(g) + O_2(g) \rightarrow 2 NO(g) \quad \Delta H = 180.5 \text{ kJ}$$

a) 1.3×10^4 kJ b) 180.5 kJ c) 1750 kJ d) 9.7×10^3 kJ e) 3.2×10^3 kJ

15. Use provided data to find the heat of combustion of one mole of propane, C₃H₈, to form gaseous carbon dioxide and liquid water.

C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(*l*) ΔH_f^0 [C₃H₈(g)]= -103.8 kJ/mol, ΔH_f^0 [CO₂(g)]= -393.5 kJ/mol, ΔH_f^0 [H₂O(*l*)]= -285.8 kJ/mol

a) -2219.9 kJ b) -575.5 kJ c) 0.0 kJ d) +575.5 kJ e) +2219.9 kJ

16. Which bond is likely to be the most polar?

a) C-H b) N-H c) O-H d) F-H e) F-F

17. Choose the compound below that should has the largest lattice energy.

a) KF b) KCl c) KBr d) KI e) KAt

18. Select the bond below that is the strongest.

a) C-C b) O=O c) C-O d) C-N e) N=N

19. Which of the following compounds illustrates sp³ hybridization?

a) C_2H_4 b) BeF_2 c) CCl_4 d) V_2O_5 e) SO_2

20. Which of the following molecule(s) has(have) a trigonal bipyramidal geometry? BrF₅ SF₄ PCl₅

a) BrF5, SF4, PCl5	b) PCl ₅	c) BrF5, SF4
d) SF ₄	e) BrF5	

Answers:

1 (c), 2 (b), 3 (b), 4 (b), 5 (e), 6 (d), 7 (e), 8 (d), 9 (b), 10 (b), 11 (d), 12 (d), 13 (d), 14 (c), 15 (a), 16 (d), 17 (a), 18 (e), 19 (c), 20 (b)

	7	6	S	4	ω	2	<u> </u>	
	87 Fr 223 Francium	55 CS 132.9055 Caesium	37 Rb 85.4678 Rubidium	19 K 39.0983 Potassium	Na 22.9898 Sodium	3 Li 6,941 Lithium	1 H 1.0079 Hydrogen	_
Lanthanide	Ra Ra ²²⁶ Radium	56 Ba 137.327 Barium	38 Sr ^{87.62} Strontium	20 Ca 40.078 Calcium	12 Mg 24.3050 Magnesium	4 Be 9.0122 Beryllium		2
57 La	89 103	57	39 Y 88.9059 Yttrium	21 Sc 44.9559 Scandium				ω
Ge	104 Rf 267 Rutherfordium	72 Hf 178.49 Hafnium	40 Zr 91.224 Zirconium	22 Ti 47.87 Titanium				4
^{s9} Pr	Db 268 Dubnium	73 Ta 180.9479 Tantalum	41 Nb 92.9064 Niobium	23 V 50.9415 Vanadium			Atomi	ഗ
Nd	106 Sg 269 Seaborgium	74 183.84 Tungsten	42 MO 95.96 Molybdenum	24 Cr 51.9961 Chromium		Symbol	Atomic Number →	6
۹ Pm Sm	107 Bh 270 Bohrium	75 Re 186.207 Rhenium	43 TC 98 Technetium	25 Mn 54.9380 Manganese	Ну		→ 	7
s ۳	108 HS ²⁶⁹ Hassium	76 OS 190.2 Osmium	44 Ru 101.07 Ruthenium	26 Fe 55.85 Iron	Hydrogen ←	1.008 工		8
EC C	109 Mt 278 Meitnerium	77 r 192.22 Iridium	45 Rh 102.9055 Rhodium	27 Co 58.9332 Cobalt				9
Gd	110 DS 281 Darmstadtium	78 Pt 195.08 Platinum	46 Pd 106.42 Palladium	28 Ni 58.6934 Nickel	Φ	- Atomic Mass		10
цр Ч	nn Rg 281 Roentgenium	79 Au 196.9665 Gold	47 Ag 107.8682 Silver	29 Cu 63.546 Copper				11
۰ ۵	112 Cn 285 Copernicium	Hg 200.59 Mercury	48 Cd 112.411 Cadmium	30 Zn 65.38 Zinc				12
Ho Ho	Ununtrium	81 T 204.3833 Thallium	49 IN 114.82 Indium	31 Ga 69.723 Gallium	13 Al 26.9815 Aluminium	5 B 10.811 Boron		13
Er ®	114 Fl 289 Flerovium	82 Pb 207.2 Lead	50 Sn 118.710 Tin	32 Ge 72.64 Germanium	14 Si 28.0855 Silicon	6 C 12.011 Carbon		14
T m	Ununpentium	83 Bi 208.9804 Bismuth	51 Sb 121.76 Antimony	33 As 74.9216 Arsenic	15 P 30.9738 Phosphorus	T N 14.0067 Nitrogen		15
٩٨ ٩٨	116 LV 293 Livermorium	Polonium	52 Te 127.60 Tellurium	34 Se 78.96 Selenium	16 S 32.065 Sulfur	8 0 15.9994 Oxygen		16
	Ununseptium	At At Astatine	53 126.9045 Iodine	35 Br 79.904 Bromine	17 Cl 35.453 Chlorine	9 – 18.9984 Fluorine		17
	118 UUO 294 Ununoctium	Rn Rn 222 Radon	54 Xe ^{131,29} Xenon	36 Kr 83.80 Krypton	18 Ar 39.948 Argon	10 Neon Neon	2 He 4.0026 Helium	18

Actinide	Lanthanide
Series	Series
AC	57
AC	La
227	138.9055
Actinium	Lanthanum
90	58
Th	Ce
232.0381	140.116
Thorium	Cerium
91	59
Pa	Pr
231.0359	140.9076
Protactinium	Praseodymium
92 U 238.0289 Uranium	Neodymium
93 Np ²³⁷ Neptunium	Pm 145 Promethium
P4 Pu 244 Plutonium	SM 150.36 Samarium
95	63
Am	Eu
243	151.964
Americium	Europium
P6	64
CM	Gd
247	157.25
Curium	Gadolinium
97	65
Bk	Tb
247	158.9253
Berkelium	Terbium
98	66
Cf	Dy
251	162.50
Californium	Dysprosium
99	67
ES	HO
252	164.9303
Einsteinium	Holmium
100	68
Fm	E r
²⁵⁷	167.26
Fermium	Erbium
101	69
Md	Tm
258	168.9342
Mendelevium	Thulium
In Nobelium	70 Yb 173.054 Ytterbium
103	71
Lr	Lu
262	174.967
Lawrencium	Lutetium

SOME USEFUL CONSTANTS

(a more complete list appears in Appendix B)

Atomic mass unit Avogadro's number Electronic charge Faraday constant

Gas constant

Pi Planck's constant Speed of light (in vacuum) 1 amu = 1.6606×10^{-24} g $N = 6.02214179 \times 10^{23}$ particles/mol $e = 1.60218 \times 10^{-19}$ coulombs F = 96,485.3399 coulombs/mol $e^ R = 0.08206 \frac{\text{L atm}}{\text{mol K}} = 1.987 \frac{\text{cal}}{\text{mol K}}$ $= 8.314472 \frac{\text{J}}{\text{mol K}} = 8.314472 \frac{\text{kPa dm}^3}{\text{mol K}}$ $\pi = 3.1415927$ $h = 6.62600896 \times 10^{-34}$ J s $c = 2.99792458 \times 10^8$ m/s

SOME USEFUL RELATIONSHIPS

Mass and Weight

SI Base Unit: Kilogram (kg)

1 kilogram = 1000 grams = 2.205 pounds 1 gram = 1000 milligrams 1 pound = 453.59 grams 1 amu = 1.6606 × 10⁻²⁴ grams 1 gram = 6.022 × 10²³ amu

1 ton = 2000 pounds

Volume

SI Base Unit: Cubic Meter (m³)

1 liter = 0.001 cubic meter 1 liter = 1000 cubic centimeters = 1000 mL 1 liter = 1.056 quarts 1 quart = 0.9463 liter 1 milliliter = 0.001 liter = 1 cubic centimeter cubic foot = 7.475 gallons = 28.316 liters 1 gallon = 4 quarts

Pressure

SI Base Unit: Pascal (Pa)

 $1 \text{ pascal} = \frac{\text{kg}}{\text{m s}^2} = 1 \text{ Newton/m}^2$ 1 atmosphere = 760 torr = 760 millimeters of mercury = 1.01325 × 10⁵ pascals = 1.01325 bar = 14.70 pounds per square inch

1 torr = 1 millimeter of mercury

Length

SI Base Unit: Meter (m)

- 1 inch = 2.54 centimeters (exactly) 1 meter = 100 centimeters = 39.37 inches
 - 1 yard = 0.9144 meter
 - 1 mile = 1.609 kilometers
- 1 kilometer = 1000 meters = 0.6215 mile 1 Ångstrom = 1.0×10^{-10} meters = 1.0×10^{-8} centimeters

Energy

SI Base Unit: Joule (J)

1 calorie = 4.184 joules = 4.129×10^{-2} L atm 1 joule = $1 \frac{\text{kg m}^2}{\text{s}^2} = 0.23901$ calorie 1 joule = 1×10^7 ergs 1 electron volt = 1.6022×10^{-19} joule 1 electron volt = 96.485 kJ/mol 1 L atm = 24.217 calories = 101.325 joules

Temperature

SI Base Unit: Kelvin (K)

 $\begin{array}{l} 0 \ \mathrm{K} = -273.15^{\circ}\mathrm{C} \\ \mathrm{K} = ^{\circ}\mathrm{C} + 273.15^{\circ} \\ ^{\circ}\mathrm{F} = 1.8(^{\circ}\mathrm{C}) + 32^{\circ} \\ ^{\circ}\mathrm{C} = \frac{^{\circ}\mathrm{F} - 32^{\circ}}{1.8^{\circ}} \end{array}$