1. Which of the following relationships are true for gases?

i) The number of moles of a gas is inversely proportional to its volume (at constant pressure and temperature).

ii) The pressure of a gas is directly proportional to its temperature in kelvins (at constant volume).

iii) The volume of a gas is inversely proportional to its pressure (at constant temperature).

a) i only b) ii only c) iii only d) i and ii e) ii and iii

2. A mixture of He and O₂ is placed in a 4.00 L flask at 32 °C. The partial pressure of the He is 3.0 atm and the partial pressure of the O₂ is 2.0 atm. What is the mole fraction of O₂?

a) 0.224 b) 0.43 c) 0.40 d) 0.57 e) 0.60

3. At constant temperature, 14.0 L of O₂ at 2.70 atm is compressed to 5.35 L. What is the final pressure of O₂?

a) 0.110 atm b) 0.142 atm c) 7.06 atm d) 21.6 atm e) 27.8 atm

4. What volume of O₂, measured at 91.2 °C and 743 mm Hg, will be produced by the decomposition of 4.88 g KClO₃? (R = 0.08206 L·atm/mol·K)

 $2 \text{ KClO}_3(s) \rightarrow 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$

a) 0.305 L b) 1.22 L c) 1.83 L d) 24.0 L e) 37.4 L

- 5. Which of the followings are not generally true of gases?
 - 1) Gases expand to fill the volume of a container.
 - 2) Gases have higher densities than solids or liquids.
 - 3) Gas particles collide with each other.
 - 4) Lighter gas particles tend to move slower at the same temperature.
 - 5) At a fixed temperature, as pressure increases, average speed increases.

a) 1, 2 and 4 b) 2, 4 and 5 c) 3, 4 and 5 d) 3 and 5 e) 2 and 5

- 6. The ideal gas law begins to break down:
 - at low temperatures
 at high temperatures
 at low pressures
 at high pressures
 at low volume
 and 3
 b) 1 and 4
 c) 2 and 3
 d) 2 and 4
 e) 5
- 7. When a hydrogen atom undergoes a transition from n = 2 to n = 1, it emits a photon with wavelength $\lambda = 121.6$ nm. What is the energy of a 1 mole of photons of this light?

a)
$$9.838 \times 10^2 \text{ kJ/mol}$$
 b) $1.602 \times 10^{22} \text{ kJ/mol}$ c) $7.602 \times 10^4 \text{ kJ/mol}$
d) $1.633 \times 10^{-18} \text{ kJ/mol}$ e) $4.540 \times 10^2 \text{ kJ/mol}$

8. Write the ground state electron configuration for manganese.

a)
$$[Ar] 4s^{2}4p^{5}$$
 b) $[Ar] 4s^{2}3d^{5}$ c) $[Ar] 3d^{7}$
d) $[Ar] 3d^{5}4p^{2}$ e) $[Kr] 4s^{2}3d^{5}$

- 9. How many valence electrons are in carbon?
 - a) 1 b) 2 c) 4 d) 6 e) 8

- 10. Which of the following represents invalid set of quantum numbers?
 - a) n = 3, l = 3, $m_l = 3$, b) n = 2, l = 1, $m_l = 0$, c) n = 3, l = 0, $m_l = 0$, d) n = 4, l = 3, $m_l = 3$, e) n = 5, l = 1, $m_l = -1$
- 11. Which element has the electron configuration [Ar] $4s^23d^{10}$?
 - a) Co b) Zn c) Ga d) Ag e) Cu

12. What is the maximum number of electrons in an atom that can have the quantum number n=3 and l=2?

- a) 2 b) 4 c) 6 d) 10 e) 12
- 13. Which one is the correct ranking of the atomic radii?
 - a) K > S > Mg > Fb) S > K > F > Mgc) K > Mg > S > Fd) Mg > K > F > Se) S > F > K > Mg

14. A 10.00 mL sample of nitric acid, HNO₃, requires 0.216 g of barium hydroxide, Ba(OH)₂ for titration to the equivalence point. What is the concentration of the nitric acid?

$$2 \text{HNO}_3(aq) + \text{Ba}(\text{OH})_2(aq) \rightarrow \text{Ba}(\text{NO}_3)_2(aq) + 2 \text{H}_2\text{O}(l)$$

a) 0.045 M b) 0.126 M c) 0.252 M d) 0.510 M e) 0.064 M

15. The combustion of methane (CH_4) produces carbon dioxide (CO_2) and steam (H_2O) .

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$

All of the following statements concerning this reaction are correct EXCEPT

a) one molecule of carbon dioxide is formed per one molecule of methane consumed.

- b) two molecules of oxygen are consumed per one molecule of methane consumed.
- c) two moles of steam are formed per two moles of oxygen consumed.
- d) the combined mass of reactants consumed equals the mass of products formed.
- e) 1 gram of carbon dioxide are formed per two grams of oxygen consumed.
- 16. A mixture of 10.0 g of NO and 14.0 g of NO₂ results in the production of 8.52 g of N₂O₃. What is the percentage yield?

$$NO(g) + NO_2(g) \rightarrow N_2O_3(l)$$

- a) 36.9 % b) 60.2 % c) 71.4 % d) 85.6 % e) 100 %
- 17. Which is the general formula of alkanes?

a) C_nH_n b) C_nH_{2n} c) C_nH_{n+2} d) C_nH_{2n+2} e) C_nH_{2n-2}

18. If 2.5 moles of each of these compounds are burned completely in O₂, which will produce the largest amount of CO₂?

a) CH₄ b) C_2H_6 c) C_2H_5OH d) C_2H_4 e) C_3H_8

19. If the binding energy of an electron is 6.41×10^{-19} J, what frequency of photon is required to liberate it from the atom?

a) $9.67 \times 10^{14} \text{ s}^{-1}$ b) 310 nm c) $9.67 \times 10^{14} \text{ nm}$ d) 310 s^{-1} e) 0

20. What's the purpose of an indicator in a titration?

- a) It helps produce the desired product in the reaction
- b) Changes color to indicate when the reaction is complete
- c) To make the solution pretty
- d) As a reactant
- e) None of the answers provided

End.....

Answers:

1 (e), 2 (c), 3 (c), 4 (c), 5 (b), 6 (b), 7 (a), 8 (b), 9 (c), 10 (a), 11 (b), 12 (d), 13 (c), 14 (c), 15 (e), 16 (a), 17 (d), 18 (e), 19 (a), 20 (b)

	7	6	Сī	4	ω	2	_	
	87 Fr 223 Francium	55 CS 132.9055 Caesium	37 Rb 85.4678 Rubidium	19 K 39,0983 Potassium	Na 22.9898 Sodium	3 Li 6.941 Lithium	1 1.0079 Hydrogen	<u>ب</u>
anthanide	88 Ra 226 Radium	56 Ba 137.327 Barium	38 Sr ^{87.62} Strontium	20 Ca 40.078 Calcium	12 Mg 24.3050 Magnesium	4 Be 9.0122 Beryllium		2
57 2	89 103	57 71	39 Y 88.9059 Yttrium	21 Sc 44.9559 Scandium				ω
	104 Rf 267 Rutherfordium	72 Hf 178.49 Hafnium	40 Zr 91.224 Zirconium	22 Ti 47.87 Titanium				4
59 Dr	105 Db 268 Dubnium	T3 Ta 180.9479 Tantalum	41 Nb 92.9064 Niobium	23 V 50.9415 Vanadium			Atomi	ഗ
ຂຶ	106 Sg ²⁶⁹ Seaborgium	74 W 183.84 Tungsten	42 MO 95.96 Molybdenum	24 Cr 51.9961 Chromium		Symbol	c Number	0
۵ ۳	107 Bh 270 Bohrium	75 Re 186.207 Rhenium	43 TC 98 Technetium	25 Mn 54.9380 Manganese	Ну		→ →	7
∧° M	108 HS ²⁶⁹ Hassium	76 OS ^{190.2} Osmium	44 Ru 101.07 Ruthenium	26 Fe 55.85 Iron	drogen 🔺	1.008 ⊥		œ
⊑ =	109 Mt ²⁷⁸ Meitnerium	77 r 192.22 Iridium	45 Rh 102.9055 Rhodium	27 CO 58.9332 Cobalt	Nam	Ator		9
⁴ ک	110 DS 281 Darmstadtium	78 Pt 195.08 Platinum	46 Pd 106.42 Palladium	28 Ni 58.6934 Nickel	ō	nic Mass		10
۲۲ ۳	111 Rg 281 Roentgenium	79 Au 196.9665 Gold	47 Ag 107.8682 Silver	29 Cu 63.546 Copper				
ک ر د	112 Cn 285 Copernicium	80 Hg 200.59 Mercury	48 Cd 112.411 Cadmium	30 Zn 65.38 Zinc				12
67 H O	113 Uut 286 Ununtrium	81 T 204.3833 Thallium	49 In 114.82 Indium	31 Ga 69.723 Gallium	13 Al 26.9815 Aluminium	5 B 10.811 Boron		13
5 8 7	114 Fl 289 Flerovium	82 Pb 207.2 Lead	50 Sn ^{118,710} Tin	32 Ge 72.64 Germanium	14 Si 28.0855 Silicon	6 C 12.011 Carbon		14
۲ ۳	115 Uup 289 Ununpentium	83 Bi 208.9804 Bismuth	51 Sb 121.76 Antimony	33 AS 74.9216 Arsenic	15 P 30.9738 Phosphorus	r Nitrogen		15 15
۲۰ ۳	116 LV 293 Livermorium	84 PO 209 Polonium	52 Te 127.60 Tellurium	34 Se 78.96 Selenium	16 S 32.065 Sulfur	8 0 15.9994 Oxygen		16
- ¹⁷	Ununseptium	At At Astatine	53	35 Br 79.904 Bromine	17 Cl 35,453 Chlorine	9 F 18.9984 Fluorine		17
	118 Uuo 294 Ununoctium	Rn Rn ²²² Radon	54 Xe ^{131,29} Xenon	36 Kr 83.80 Krypton	18 Ar 39.948 Argon	10 Neon	2 He 4.0026 Helium	18

Actinide	anthanide
Series	Series
89	57
AC	La
227	138.9055
Actinium	Lanthanum
90	58
Th	Ce
232.0381	140.116
Thorium	Cerium
91	59
Pa	Pr
231.0359	140.9076
Protactinium	Praseodymium
92 U 238.0289 Uranium	Neodymium
93	Pm
Nap	145
Neptunium	Promethium
94	62
Pu	Sm
244	150.36
Plutonium	Samarium
Am 243 Americium	63 EU 151.964 Europium
247 Curium	64 Gd 157.25 Gadolinium
97	65
BK	Tb
247	158.9253
Berkelium	Terbium
98	66
Cf	Dy
²⁵¹	162.50
Californium	Dysprosium
99	67
ES	HO
252	164.9303
Einsteinium	Holmium
100	68
Fm	⊑r
²⁵⁷	167.26
Fermium	Erbium
101	б9
Md	Тт
258	168.9342
Mendelevium	Thulium
Nobelium	70 Yb 173.054 Ytterbium
103	דז
Lr	Lu
262	174,967
Lawrencium	Lutetium

SOME USEFUL CONSTANTS

(a more complete list appears in Appendix B)

Atomic mass unit Avogadro's number Electronic charge Faraday constant

Gas constant

Pi Planck's constant Speed of light (in vacuum) 1 amu = 1.6606×10^{-24} g $N = 6.02214179 \times 10^{23}$ particles/mol $e = 1.60218 \times 10^{-19}$ coulombs F = 96,485.3399 coulombs/mol $e^ R = 0.08206 \frac{\text{L atm}}{\text{mol K}} = 1.987 \frac{\text{cal}}{\text{mol K}}$ $= 8.314472 \frac{\text{J}}{\text{mol K}} = 8.314472 \frac{\text{kPa dm}^3}{\text{mol K}}$ $\pi = 3.1415927$ $h = 6.62600896 \times 10^{-34}$ J s $c = 2.99792458 \times 10^8$ m/s

SOME USEFUL RELATIONSHIPS

Mass and Weight

SI Base Unit: Kilogram (kg)

1 kilogram = 1000 grams = 2.205 pounds 1 gram = 1000 milligrams 1 pound = 453.59 grams 1 amu = 1.6606×10^{-24} grams 1 gram = 6.022×10^{23} amu

1 ton = 2000 pounds

Volume

SI Base Unit: Cubic Meter (m³)

1 liter = 0.001 cubic meter 1 liter = 1000 cubic centimeters = 1000 mL 1 liter = 1.056 quarts 1 quart = 0.9463 liter 1 milliliter = 0.001 liter = 1 cubic centimeter cubic foot = 7.475 gallons = 28.316 liters 1 gallon = 4 quarts

Pressure

SI Base Unit: Pascal (Pa)

 $1 \text{ pascal} = \frac{\text{kg}}{\text{m s}^2} = 1 \text{ Newton/m}^2$ 1 atmosphere = 760 torr = 760 millimeters of mercury = 1.01325 × 10⁵ pascals = 1.01325 bar = 14.70 pounds per square inch

1 torr = 1 millimeter of mercury

Length

SI Base Unit: Meter (m)

- 1 inch = 2.54 centimeters (exactly) 1 meter = 100 centimeters = 39.37 inches
 - 1 yard = 0.9144 meter
 - 1 mile = 1.609 kilometers
- 1 kilometer = 1000 meters = 0.6215 mile 1 Ångstrom = 1.0×10^{-10} meters = 1.0×10^{-8} centimeters

Energy

SI Base Unit: Joule (J)

1 calorie = 4.184 joules = 4.129×10^{-2} L atm 1 joule = $1 \frac{\text{kg m}^2}{\text{s}^2} = 0.23901$ calorie 1 joule = 1×10^7 ergs 1 electron volt = 1.6022×10^{-19} joule 1 electron volt = 96.485 kJ/mol 1 L atm = 24.217 calories = 101.325 joules

Temperature

SI Base Unit: Kelvin (K)

 $\begin{array}{l} 0 \ \mathrm{K} = -273.15^{\circ}\mathrm{C} \\ \mathrm{K} = ^{\circ}\mathrm{C} + 273.15^{\circ} \\ ^{\circ}\mathrm{F} = 1.8(^{\circ}\mathrm{C}) + 32^{\circ} \\ ^{\circ}\mathrm{C} = \frac{^{\circ}\mathrm{F} - 32^{\circ}}{1.8^{\circ}} \end{array}$

