1. Which of the following relationships are true for gases?
i) The number of moles of a gas is inversely proportional to its volume (at constant pressure and temperature).
ii) The pressure of a gas is directly proportional to its temperature in kelvins (at constant volume).
iii) The volume of a gas is inversely proportional to its pressure (at constant temperature).
a) i only
b) ii only
c) iii only
d) i and ii
e) ii and iii
2. A mixture of He and O_{2} is placed in a 4.00 L flask at $32{ }^{\circ} \mathrm{C}$. The partial pressure of the He is 3.0 atm and the partial pressure of the O_{2} is 2.0 atm . What is the mole fraction of O_{2} ?
a) 0.224
b) 0.43
c) 0.40
d) 0.57
e) 0.60
3. At constant temperature, 14.0 L of O_{2} at 2.70 atm is compressed to 5.35 L . What is the final pressure of O_{2} ?
a) 0.110 atm
b) 0.142 atm
c) 7.06 atm
d) 21.6 atm
e) 27.8 atm
4. What volume of O_{2}, measured at $91.2^{\circ} \mathrm{C}$ and 743 mm Hg , will be produced by the decomposition of $4.88 \mathrm{~g} \mathrm{KClO}_{3}$? $(\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K})$

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

a) 0.305 L
b) 1.22 L
c) 1.83 L
d) 24.0 L
e) 37.4 L
5. Which of the followings are not generally true of gases?

1) Gases expand to fill the volume of a container.
2) Gases have higher densities than solids or liquids.
3) Gas particles collide with each other.
4) Lighter gas particles tend to move slower at the same temperature.
5) At a fixed temperature, as pressure increases, average speed increases.
a) 1,2 and 4
b) 2, 4 and 5
c) 3, 4 and 5
d) 3 and 5
e) 2 and 5
6. The ideal gas law begins to break down:
1) at low temperatures
2) at high temperatures
3) at low pressures
4) at high pressures
5) at low volume
a) 1 and 3
b) 1 and 4
c) 2 and 3
d) 2 and 4
e) 5
7. When a hydrogen atom undergoes a transition from $n=2$ to $n=1$, it emits a photon with wavelength $\lambda=121.6 \mathrm{~nm}$. What is the energy of a 1 mole of photons of this light?
a) $9.838 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}$
b) $1.602 \times 10^{22} \mathrm{~kJ} / \mathrm{mol}$
c) $7.602 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}$
d) $1.633 \times 10^{-18} \mathrm{~kJ} / \mathrm{mol}$
e) $4.540 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}$
8. Write the ground state electron configuration for manganese.
a) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$
b) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$
c) $[\mathrm{Ar}] 3 \mathrm{~d}^{7}$
d) $[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{p}^{2}$
e) $[\mathrm{Kr}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$
9. How many valence electrons are in carbon?
a) 1
b) 2
c) 4
d) 6
e) 8
10. Which of the following represents invalid set of quantum numbers?
a) $n=3, l=3, m_{l}=3$,
b) $n=2, l=1, m_{l}=0$,
c) $n=3, l=0, m_{l}=0$,
d) $n=4, l=3, m_{l}=3$,
e) $n=5, l=1, m_{l}=-1$
11. Which element has the electron configuration $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$?
a) Co
b) Zn
c) Ga
d) Ag
e) Cu
12. What is the maximum number of electrons in an atom that can have the quantum number $n=3$ and $l=2$?
a) 2
b) 4
c) 6
d) 10
e) 12
13. Which one is the correct ranking of the atomic radii?
a) $\mathrm{K}>$ S $>\mathrm{Mg}>$ F
b) $\mathrm{S}>$ K $>$ F $>\mathrm{Mg}$
c) $\mathrm{K}>\mathrm{Mg}>\mathrm{S}>\mathrm{F}$
d) $\mathrm{Mg}>$ K $>$ F $>$ S
e) S $>$ F $>$ K $>$ Mg
14. A 10.00 mL sample of nitric acid, HNO_{3}, requires 0.216 g of barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$ for titration to the equivalence point. What is the concentration of the nitric acid?

$$
2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

a) 0.045 M
b) 0.126 M
c) 0.252 M
d) 0.510 M
e) 0.064 M
15. The combustion of methane $\left(\mathrm{CH}_{4}\right)$ produces carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and steam $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

All of the following statements concerning this reaction are correct EXCEPT
a) one molecule of carbon dioxide is formed per one molecule of methane consumed.
b) two molecules of oxygen are consumed per one molecule of methane consumed.
c) two moles of steam are formed per two moles of oxygen consumed.
d) the combined mass of reactants consumed equals the mass of products formed.
e) 1 gram of carbon dioxide are formed per two grams of oxygen consumed.
16. A mixture of 10.0 g of NO and 14.0 g of NO_{2} results in the production of 8.52 g of $\mathrm{N}_{2} \mathrm{O}_{3}$. What is the percentage yield?

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(l)
$$

a) 36.9%
b) 60.2%
c) 71.4%
d) 85.6%
e) 100%
17. Which is the general formula of alkanes?
a) $\mathrm{C}_{n} \mathrm{H}_{n}$
b) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$
d) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
e) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
18. If 2.5 moles of each of these compounds are burned completely in O_{2}, which will produce the largest amount of CO_{2} ?
a) CH_{4}
b) $\mathrm{C}_{2} \mathrm{H}_{6}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
d) $\mathrm{C}_{2} \mathrm{H}_{4}$
e) $\mathrm{C}_{3} \mathrm{H}_{8}$
19. If the binding energy of an electron is $6.41 \times 10^{-19} \mathrm{~J}$, what frequency of photon is required to liberate it from the atom?
a) $9.67 \times 10^{14} \mathrm{~s}^{-1}$
b) 310 nm
c) $9.67 \times 10^{14} \mathrm{~nm}$
d) $310 \mathrm{~s}^{-1}$
e) 0
20. What's the purpose of an indicator in a titration?
a) It helps produce the desired product in the reaction
b) Changes color to indicate when the reaction is complete
c) To make the solution pretty
d) As a reactant
e) None of the answers provided

End......

Answers:

1 (e), 2 (c), 3 (c), 4 (c), 5 (b), 6 (b), 7 (a), 8 (b), 9 (c), 10 (a), 11 (b), 12 (d), 13 (c), 14 (c), 15 (e), 16 (a), 17 (d), 18 (e), 19 (a), 20 (b)

		$\begin{gathered} \text { unligo } \\ \text { Sis } \\ \mathrm{ON}_{7} \end{gathered}$	(tation	m_{J}											${ }^{\text {unnupu }}$	รว!!อร 	
						$\underbrace{\substack{\text { unsis.cssad } \\ \text { oscrat }}}_{99}$						${ }^{\text {cinnurposn }}$				spups apiue	
$\underset{81}{ } \mathrm{On}_{1}$	$\operatorname{sn}_{\mathrm{Lu}}$	$\begin{gathered} \text { nnuoumann } \\ \wedge 67 \\ \hline 962 \\ \hline \end{gathered}$	$\mathrm{dn}_{\mathrm{stl}}^{68 \mathrm{n}}$			$\underset{\text { zit }}{\substack{\text { unpuwado } \\ \text { sig }}}$						K_{901}			801/68		
$\begin{aligned} & \hline \text { uppeq } \\ & \text { urz } \\ & \text { uy } \\ & \hline 98 \end{aligned}$		$\begin{array}{\|c} \hline \text { unnuovod } \\ \mathrm{O}_{02} \\ \mathrm{O}_{\text {t8 }} \end{array}$	$\begin{gathered} \hline \text { ynnusig } \\ \text { toxe } 8802 \\ !9_{88} \end{gathered}$	$\begin{aligned} & \hline \text { pepo } \\ & \text { peove } \\ & \mathrm{qd}_{\mathrm{z8}} \end{aligned}$	$\begin{gathered} \hline \text { unnivel } \\ \text { Enerictor } \\ \mid \perp_{18} \end{gathered}$					$\begin{aligned} & \text { unnuso } \\ & \begin{array}{c} \text { roco } \\ \mathrm{SO}_{9} \end{array} \\ & \hline \end{aligned}$					LL/LS		
	$\begin{gathered} \begin{array}{c} \text { julucurg } \\ \text { tucicic } \\ 1 g_{s \varepsilon} \end{array} \end{gathered}$												$\bigwedge_{\substack{\text { unipuen } \\ \text { sitbos }}}^{\substack{\text { und }}}$				
$\begin{aligned} & \hline 10610 \\ & 88668 \\ & 1 \forall 8 \\ & 81 \end{aligned}$									N	иәбо1	H						
		(1abko		(yoquer	${ }_{\substack{40108 \\ 118801 \\ 8 \\ 5}}$			W	O+V	800		ques					
OH_{2}												quin	mosy				
81	$\angle 1$	91	¢ı	$\dagger 1$	$\varepsilon 1$	21	11	01	6	8	\angle	9	¢	\dagger	ε	乙	1

SOME USEFUL CONSTANTS

SOME USEFUL RELATIONSHIPS

Mass and Weight
SI Base Unit: Kilogram (kg)
1 kilogram $=1000$ grams $=2.205$ pounds
1 gram $=1000$ milligrams
1 pound $=453.59$ grams
1 amu $=1.6606 \times 10^{-24}$ grams
1 gram $=6.022 \times 10^{23}$ amiut
1 ton $=2000$ pounds
Volume
SI Base Unit: Cubic Meter $\left(\mathrm{m}^{3}\right)$
1 liter $=0.001$ cubic meter
1 liter $=1000$ cubic centimeters $=1000 \mathrm{~mL}$
1 liter $=1.056$ quarts
1 quart $=0.9463$ liter
1 milliliter $=0.001$ liter $=1$ cubic centimeter
cubic foot $=7.475$ gallons $=28.316$ liters
1 gallon $=4$ quarts

Pressure

SI Base Unit: Pascal (Pa)
1 pascal $=\frac{\mathrm{kg}}{\mathrm{m} \mathrm{s}^{2}}=1$ Newton $/ \mathrm{m}^{2}$
1 atmosphere $=760$ torr
$=760$ millimeters of mercury
$=1.01325 \times 10^{5}$ pascals
$=1.01325 \mathrm{bar}$
$=14.70$ pounds per square inch
1 torr $=1$ millimeter of mercury

Length

SI Base Unit: Meter (m)

1 inch $=2.54$ centimeters (exactly)
1 meter $=100$ centimeters $=39.37$ inches
1 yard $=0.9144$ meter
1 mile $=1.609$ kilometers
1 kilometer $=1000$ meters $=0.6215$ mile
1 Ångstrom $=1.0 \times 1.0^{-10}$ meters $=1.0 \times 10^{-8}$ centimeters

Energy

SI Base Unit: Joule (J)

$$
\begin{aligned}
1 \text { calorie } & =4.184 \text { joules }=4.129 \times 10^{-2} \mathrm{~L} \text { atm } \\
1 \text { joule } & =1 \frac{\mathrm{~kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}}=0.23901 \text { calorie } \\
1 \text { joule } & =1 \times 10^{7} \mathrm{ergs} \\
1 \text { electron volt } & =1.6022 \times 10^{-19} \text { joule } \\
1 \text { electron volt } & =96.485 \mathrm{~kJ} / \mathrm{mol} \\
1 \mathrm{~L} \mathrm{~atm} & =24.217 \text { calories }=101.325 \text { joules }
\end{aligned}
$$

Temperature

SI Base Unit: Kelvin (K)

$$
\begin{aligned}
0 \mathrm{~K} & =-273.15^{\circ} \mathrm{C} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273.15^{\circ} \\
{ }^{\circ} \mathrm{F} & =1.8\left({ }^{\circ} \mathrm{C}\right)+32^{\circ} \\
{ }^{\circ} \mathrm{C} & =\frac{{ }^{\circ} \mathrm{F}-32^{\circ}}{1.8^{\circ}}
\end{aligned}
$$

