

### **Chapter 1**

## Introduction to Chemistry

Gang Chen, Department of Chemistry, UCF

### **The Macroscopic Perspective**

Matter is anything that has <u>mass</u> and can be <u>observed</u>.

Matter is observed through two types of changes.

i) Physical changes



melting & freezing

ii) Chemical changes



boiling & condensing



dissolving







#### Example Problem

- Q. Classify each change as physical or chemical!
  - a) rusting of an iron bridge С b) melting of ice Ρ c) burning of a wooden stick С d) dissolving of sugar in water Ρ e) digestion of a baked potato С

Something new is formed in a chemical change!

#### **The Macroscopic Perspective**

 Physical properties are variables of matter that we can measure without changing the identity of the substance being observed.

| Color   | Luster        |
|---------|---------------|
| Size    | Hardness      |
| Odor    | Condensing    |
| Density | Melting point |

Solubility Conductivity Boiling point

More physical properties can be found online https://en.wikipedia.org/wiki/Physical\_property

#### **The Macroscopic Perspective**

• Chemical properties are determined only by observing how a substance changes its identity in chemical reactions.



oxidizing-reducing (corrosion)







Practice 1.16

#### Example Problem

Q. Which of the following properties of a metal are chemical properties?

- a) It is hard
- b) It rusts in air
- c) Its density is 5.5 g/cm3
- d) It reacts with a base

Ρ

С

Ρ

#### **Numbers and Measurements in Chemistry**

- Chemists quantify data, express collected data with units and significant figures.
  - Units designate the type of quantity measured.
  - Prefixes provide scale to a base unit.
  - Significant Figures indicate the amount of information that is reliable when discussing a measurement.

#### **Temperature**



Temperature is measured using the Fahrenheit, Celsius, and Kelvin (absolute) temperature scales.

#### **Temperature Scale Conversions**

$$^{\circ}F = (1.8 \times ^{\circ}C) + 32$$

Q: -320.4 °F in K

K = -195.8 + 273.15 = 77.4

$$^{\circ}C = (^{\circ}F - 32)/1.8$$

$$K = {}^{\circ}C + 273.15$$

 $^{\circ}C = K - 273.15$ 

## **Chapter 2**

#### **Atoms and Molecules**

Gang Chen, Department of Chemistry, UCF

#### **Atomic Structure and Mass**

Atoms have a <u>nucleus</u> which contains <u>protons</u> and <u>neutrons</u>. The nucleus is surrounded by a cloud of <u>electrons</u>.

Most of the atom's mass (proton; neutron) & its positive charge (proton) are in the nucleus.

The number of negatively charged electrons = number of positively charged protons.

Therefore, the <u>atom</u> is electrically neutral.



#### **Atomic Number and Mass Number**

- Atomic Number, Z, is the number of protons in a nucleus.
  - identifies the element
- Mass Number, *A*, is the sum of the number of protons and number of neutrons in a nucleus.



#### Example Problem

Q. How many protons, neutrons, and electrons are in the <sup>22</sup>Na atom?

Z = 11, A = 22, so A – Z = 11

a) 11 protons, 11 neutrons, 10 electrons

b) 22 protons, 11 neutrons, 11 electrons

c) 11 protons, 11 neutrons, 11 electrons

d) 10 protons, 12 neutrons, 10 electrons

e) 11 protons, 22 neutrons, 11 electrons

#### Isotopes

- Isotopes are atoms of an element that differ in the number of neutrons in their nucleus.
  - same Z but different A

E.g., the symbols for the isotopes of carbon are:

• Isotopic abundance is the mass percentage of an isotope in a naturally occurring element.

Practice 2.12, 2.13, 2.14

#### **Atomic Masses**

- Relative atomic mass for an element is an *average* of the atomic masses for the naturally occurring isotopes for an element.
  - Carbon-12 = 12.0000 x 0.9893 = 11.87 amu
  - Carbon-13 = 13.0036 x 0.0107 = 0.139 amu
  - Average mass = 11.87 + 0.139 = 12.01 amu

#### Practice 2.19, 2.21

#### lons

Atoms acquire charge (form ions) by gaining or losing <u>electrons</u> (not protons!!!) in chemical reactions to form ions.

#### Atoms:

| AI: 13p⁺, 13e⁻                                        | O: 8p⁺, 8e⁻                                                                   | Ca: 20p⁺, 20e⁻      |
|-------------------------------------------------------|-------------------------------------------------------------------------------|---------------------|
| lons:                                                 |                                                                               |                     |
| Al <sup>3+</sup> : 13p <sup>+</sup> ,10e <sup>-</sup> | <mark>O²-: 8p+</mark> , 10e⁻                                                  | Ca²+: 20p+, 18e⁻    |
| monatomic<br>cation                                   | monatomic<br>anion                                                            | monatomic<br>cation |
| polyatomic<br>cation                                  | IH <sub>4</sub> <sup>+</sup> polyatomic NO <sub>3</sub> <sup>-</sup><br>anion |                     |

Practice 2.26, 2.27 17

#### **Chemical Formulas**

- Compound: a pure substance; made up of atoms of two or more elements (CO; NO;....).
- Chemical formulas describe a compound in terms of the elements the compound contains.
  - The number of atoms for each element is indicated by a subscript to the right of the chemical symbol.
    - Groups of atoms can be designated using parentheses. Subscripts outside these parentheses mean that all atoms enclosed in the parentheses are multiplied by the value indicated by the subscript.

$$Fe_3(PO_4)_2 \bullet 8H_2O$$
 3 Fe, 2 P, 16 O, 16 H  
Practice 2.35, 2.36

#### **Chemical Formulas**



Ethylene,  $C_2H_4$ 

 Molecular formulas indicate the elements and number of atoms of each element <u>actually contained</u> in a discrete unit of a compound.

### $C_2H_4$

• Empirical formulas indicate the smallest whole number ratio between the number of atoms of each element in a molecular formula.  $CH_2 (CH_2)_n$  Practice 2.47

#### **Inorganic and Organic Chemistry**

- Organic chemistry is the study of the compounds of the element carbon, usually with oxygen, nitrogen, and hydrogen.
  - More than 18 million organic compounds exist.
  - Includes biological molecules and nearly all synthetic polymers.
  - Isomers: Different organic molecules that have the same formula but are connected differently.

Inorganic chemistry is the study of all other elements and their compounds.

## **Organic Chemistry**

- Because carbon compounds can become quite large, organic compounds are described simply and unambiguously using line structures, where carbons and hydrogens are not explicitly shown.
  - Each corner or end of a line is a carbon. CH<sub>3</sub>
  - Hydrogen atoms on carbon atoms are implied. Carbon makes four bonds, "missing" bonds go to hydrogen atoms. Hydrogen can only make one covalent bond to another atom.

 $CH_2 CH_3$ 

21

CH<sub>2</sub>

- Hydrogen atoms on any other element are shown
- All other elements are shown



### **Functional Groups**

- Functional groups are arrangements of atoms that tend to display similar chemical properties.
  - Chemical formulas are often written to emphasize functional groups.
    - Methanol, an alcohol, is often written CH<sub>3</sub>OH instead of CH<sub>4</sub>O.
- Hydrocarbons contain only H and C atoms.



methanol

methane

 Addition of functional groups to hydrocarbons results in more complex compounds.

### **Chemical Nomenclature**

- Chemical nomenclature is a systematic means of assigning names to chemical compounds.
- Binary compounds contain only two elements.
  - Covalent binary compounds are named differently from ionic binary compounds.
  - Recognizing a compound as ionic or covalent assists in naming.
    - A metal and a nonmetal generally combine to form ionic compounds.
    - Two nonmetals generally combine to form a covalent compound.
    - Presence of polyatomic ions indicates ionic bonding.

23

### **Naming Covalent Compounds**

- The first element in the formula retains is full name.
- The second element is named by replacing the ending from its name with the suffix -ide.
- Both elements are preceded by a number-designating prefix except when there is only one atom of the first element, which will not use the prefix mono-.

#### Table 2.4

Greek prefixes for the first ten numbers

| Number | Prefix |
|--------|--------|
| One    | Mono-  |
| Two    | Di-    |
| Three  | Tri-   |
| Four   | Tetra- |
| Five   | Penta- |
| Six    | Hexa-  |
| Seven  | Hepta- |
| Eight  | Octa-  |
| Nine   | Nona-  |
| Ten    | Deca-  |

#### **Naming Covalent Compounds**



(a) Dinitrogen monoxide, N<sub>2</sub>O



(b) Nitrogen monoxide, NO



(c) Nitrogen dioxide, NO<sub>2</sub>



Nitrogen forms a number of binary compounds with oxygen.

Practice 2.73-2.75

## Naming Ionic Compounds

- Ionic compounds are electrically neutral and are named in order of "cation anion", as in sodium chloride.
  - The cation retains its full name.
    - Monoatomic cation charge can often be found by position in the periodic table.
    - Cations with more than one charge (e.g., transition metals) are named using Roman numerals indicating the charge, e.g., iron(II)
  - Monatomic anions are named by replacing the ending of the element name with the suffix -ide, e.g., brom*ide*
  - A polyatomic cation or anion is named using its common name.

copper(I) oxide $Cu_2O$ iron(II) chloride $FeCl_2$ 

## Naming Ionic Compounds

Ion charge (some) predicted by group number on periodic table:

Metals form positive ions: cations. Nonmetals form negative ions: anions. 8A 1A2A 7A 3A 4A5A 6A Be<sup>2+</sup>  $N^{3-}$ Li<sup>+</sup>  $O^{2-}$  $\mathbf{F}^{-}$  $A1^{3+}$  $S^{2-}$ Na<sup>+</sup> Mg<sup>2+</sup>  $C1^{-}$  $\mathbf{K}^+$  $Ca^{2+}$ Ga<sup>3+</sup>  $Se^{2-}$ Br<sup>-</sup>  $Sr^{2+}$ In<sup>3+</sup>  $Te^{2-}$  $Rb^+$ I-Transition metals form cations with various charges  $Cs^+$ Ba<sup>2+</sup>

> Metal: charge on cation = grp number Nonmetal: charge on anion = grp number - 8

Q: The correct formula for potassium phosphate is:

a) KPO<sub>4</sub> b) K<sub>2</sub>PO<sub>4</sub> c) K<sub>3</sub>PO<sub>4</sub> d) K(PO<sub>4</sub>)<sub>2</sub> e) K(PO<sub>4</sub>)<sub>3</sub> K<sup>+</sup> (1+) x 3 = 3+ PO<sub>4</sub><sup>3-</sup> (3-) x 1 = 3-

Practice 2.76-2.79

#### **Chapter 3**

### Molecules, Moles, and Chemical Equations

Gang Chen, Department of Chemistry, UCF

## **Balancing Chemical Equations**

- The law of conservation of matter: matter is neither created nor destroyed.
  - Chemical reactions must obey the law of conservation of matter.
    - The same number of atoms for each element must occur on both sides of the chemical equation.
    - A chemical reaction simply rearranges the atoms into new compounds.

Q. Write a balanced chemical equation describing the reaction between butane ( $C_4H_{10}$ ) and oxygen ( $O_2$ ) to form carbon dioxide and water.

 $C_4H_{10(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$ balance C  $C_4 H_{10(g)} + O_{2(g)} \rightarrow 4CO_{2(g)} + H_2 O_{(g)}$ balance H  $C_4H_{10(g)} + O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{(g)}$ balance O  $C_4H_{10(g)} + 6.5O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{(g)}$  $2C_4H_{10(g)} + 13O_{2(g)} \rightarrow 8CO_{2(g)} + 10H_2O_{(g)}$ **Practice 3.11, 3.13, 3.17** 

#### **Chemical Equations for Aqueous Reactions**

• Molecular equation

 $AgNO_3(aq) + NaCl(aq) \longrightarrow AgCl(s) + NaNO3(aq)$ 

• Total ionic equation

 $Ag^{+}(aq) + NO_{3}^{-}(aq) + Na^{+}(aq) + CI^{-}(aq) \longrightarrow$  $AgCI(s) + NO_{3}^{-}(aq) + Na^{+}(aq)$ 

• Net ionic equation

 $Ag^+(aq) + CI^-(aq) \longrightarrow AgCI(s)$ 

Spectator ions: NO<sub>3</sub><sup>-</sup> and Na<sup>+</sup>

Spectator ions are ions uninvolved in the chemical reaction.

#### **Acid-Base Reactions**

- Acids are substances that dissolve in water to produce H<sup>+</sup> (or H<sub>3</sub>O<sup>+</sup>) ions.
  - Examples: HCI, HNO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>, HCN
- Bases are substances that dissolve in water to produce OHions.
  - Examples: NaOH, Ca(OH)<sub>2</sub>, NH<sub>3</sub>

 $HCl(g) + H_2O(I) \longrightarrow H_3O^+(aq) + Cl^-(aq)$ 

 $NaOH(s) \longrightarrow Na^{+}(aq) + OH^{-}(aq)$ 

#### **Acid-Base Reactions**

- Mixing an acid and a base leads to a reaction known as neutralization, in which the resulting solution is neither acidic nor basic.
  - Net ionic equation for neutralization of strong acid and strong base.

salt  $2HNO_{3(aq)} + Ba(OH)_{2(aq)} \rightarrow Ba(NO_{3})_{2(aq)} + 2H_{2}O(I)$   $2H^{+}_{(aq)} + 2NO_{3}^{-}_{(aq)} + Ba^{2+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow Ba^{2+}_{(aq)} + 2NO_{3}^{-}_{(aq)} + 2H_{2}O(I)$ 

 $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_2O(I)$ the net ionic equation for strong acid-strong base rxn.

#### **Precipitation Reactions**

• A precipitation reaction is an aqueous reaction that produces a solid, called a precipitate.

$$Pb(NO_3)_2(aq) + 2 NaI(aq) \rightarrow PbI_2(s) + 2 NaNO_3(aq)$$

• Net ionic reaction for the precipitation of lead(II) iodide.

$$Pb^{2+}(aq) + 2I^{-}(aq) \longrightarrow PbI_{2}(s)$$

#### Avogadro's Number and the Mole

- A mole is a means of counting the large number of particles in samples.
  - One mole is the number of atoms in exactly 12 grams of <sup>12</sup>C (carbon-12) - standard.
  - 1 mole contains Avogadro's number (6.022 x 10<sup>23</sup> particles/mole) of particles.
  - The mass of 6.022 x 10<sup>23</sup> atoms of any element is the molar mass of that element.
  - The molar mass of a compound is the sum of the molar masses of <u>ALL</u> the atoms/ions in a compound.

36

#### **Calculations Using Moles and Molar Mass**

• Avogadro's number functions much like a unit conversion between moles to number of particles.

 $moles of a substance = \frac{number of particles}{Avogadro's number}$ 

- Molar mass  $(C_6H_{12}O_6) = 180.15 \text{ g/mol}$
- How many O atoms are present in 214 g of mannose?

**214 g mannose** 
$$\times \frac{1 \text{ mole}}{180.15 \text{ g mannose}} \times \frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mole}} \times \frac{6 \text{ O atoms}}{1 \text{ molecule}}$$

4.29×10<sup>24</sup> O atoms Practice 3.51, 3.53

# Elemental Analysis: Determining Empirical and Molecular Formulas

- Empirical formulas can be determined from an elemental analysis.
  - An elemental analysis measures the mass percentage of each element in a compound.
  - The formula describes the composition in terms of the atomic ratio of each element.
  - The molar masses of the elements provide the connection between the elemental analysis and the formula.

# Elemental Analysis: Determining Empirical and Molecular Formulas

- Assume a 100 gram sample size
- Percentage element × sample size = mass element in compound. (e.g., 16% carbon = 16 g carbon)
- Convert mass of each element to moles using the molar mass.
- Divide by smallest number of moles to get mole to mole ratio for empirical formula.
- When division by smallest number of moles results in small rational fractions, multiply all ratios by an appropriate integer to give whole numbers. Empirical formulas do not have fractions!
  - $2.5 \times 2 = 5$ ,  $1.33 \times 3 = 4$ , etc.

# Elemental Analysis: Determining Empirical and Molecular Formulas

Q. Determine the simplest formula of the compound which has the composition 74.0 % C, 8.65 % H, 17.4 % N.



## Molarity

- Molarity, or molar concentration, *M*, is the number of moles of solute per liter of solution.
  - Provides relationship among molar concentration, moles of solute, and liters of solution.

Molarity 
$$(M) = \frac{\text{moles of solute}}{\text{liter of solution}}$$

• If we know any two of these quantities, we can determine the third.

$$M = n / V$$
  $n = M \times V$ 

### Dilution

- Dilution is the process in which solvent is added to a solution to decrease the concentration of the solution.
  - The number of moles of solute is the same before and after dilution.
  - Since the number of moles of solute equals the product of molarity and volume (*M* × *V*), we can write the following equation, where the subscripts denote <u>initial</u> and <u>final</u> values.

$$M_{\rm i} \times V_{\rm i} = M_{\rm f} \times V_{\rm f}$$

#### Example Problem

Q. Determine the initial volume needed to generate 10.0 L of 0.45 M solution from a 3.0 M solution

Use  $M_i \times V_i = M_f \times V_f$   $M_f = 0.45 \text{ M}; \quad V_f = 10.0 \text{ L}$   $M_i = 3.0 \text{ M}; \quad V_i = ?$  $V_i = \frac{M_f \times V_f}{M_i} = \frac{0.45 \text{ M} \times 10.0 \text{ L}}{3.0 \text{ L}} = 1.5 \text{ L}$ 

Dilution: adding more solvent to a solution

Practice 3.67, 3.69