Chapter 4

Stoichiometry

Alkanes and Hydrocarbons

- Alkanes are hydrocarbons where the carbon atoms are linked together with single bonds.

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}
$$

- Hydrocarbons are compounds composed only of hydrogen and carbon.

Fundamentals of Stoichiometry

- Stoichiometry is a term used to describe quantitative relationships in chemistry.
- "How much?" of a product is produced or reactant is consumed.
- A balanced chemical equation is needed.
- Conversion between mass or volume to number of moles frequently needed.

Ratios from a Balanced Chemical Equation

- Mole ratios are obtained from the coefficients in the balanced chemical reaction.
- $1 \mathrm{CH}_{4}: 2 \mathrm{O}_{2}: 1 \mathrm{CO}_{2}: 2 \mathrm{H}_{2} \mathrm{O}$
- $1 \mathrm{~mol} \mathrm{CH} 44: 2 \mathrm{~mol} \mathrm{O}_{2}: 1 \mathrm{~mol} \mathrm{CO} 2: 2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
- These ratios can be used in solving problems:

$$
\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{2 \mathrm{~mol} \mathrm{O}_{2}} \text { or } \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CH}_{4}}
$$

Ratios from a Balanced Chemical Equation

- This flow diagram illustrates the various steps involved in solving a typical reaction stoichiometry problem.
- No different than unit conversion
- Usually more than one conversion is necessary
- Write all quantities with their complete units

Example Question

- How many grams of water can be produced if sufficient hydrogen reacts with 26.0 g of oxygen?

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Limiting Reactants

- In many chemical reactions, one reactant is often exhausted before the other reactants. This reactant is the limiting reactant.
- Limiting reactant is determined using stoichiometry.
- The limiting reactant limits the quantity of product produced.
 forms?

$$
\begin{gathered}
4 \mathrm{NH}_{3} \\
43.0 \mathrm{~kg}
\end{gathered}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

$$
75.77 \times 10^{3} \mathrm{~g} \text { NO } \quad 75.8 \mathrm{~kg} \mathrm{NO}
$$

$\underset{\text { limiting }}{35.4 \times 10^{3} \mathrm{~g} \mathrm{O}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}} \mathbf{2} \times \frac{4 \mathrm{~mol} \mathrm{NO}}{5 \mathrm{~mol} \mathrm{O}} \times \frac{30.01 \mathrm{~g} \mathrm{NO}}{1 \mathrm{~mol} \mathrm{NO}}$

$$
53.12 \times 10^{3} \mathrm{~g} \text { NO } \quad 26.6 \mathrm{~kg} \mathrm{NO}
$$

smaller amt produced; O_{2} is limiting reactant!!

Theoretical Yield

- The maximum mass of a product that can be obtained in a reaction is determined by the limiting reactant.
- Determine which reactant is the limiting reactant.
- Calculate the mass of product that can be made from the limiting reactant. This mass is the theoretical yield.
- In stoichiometric mixtures, however, both reactants are consumed completely, so either could be considered the limiting reactant.

Theoretical and Percentage Yields

Percentage Yield $=\left(\frac{\text { actual yield }}{\text { theoretical yield }}\right) \times 100 \%$

- Reaction efficiency is measured with percentage yield.
- The mass of product obtained is the actual yield.
- The ideal mass of product obtained from calculation is the theoretical yield.
Q. If 10.0 g NO react with 14.0 g of NO_{2} and 8.52 g of $\mathrm{N}_{\mathbf{2}} \mathrm{O}_{3}$ are produced. What is the percentage yield? $\mathrm{NO}+\mathrm{NO}_{2} \longrightarrow \mathrm{~N}_{2} \mathrm{O}_{3}$
Percent yield $=\frac{8.52 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{3}}{\text { Theoretical yield }} \times 100 \%=$? 36.9%
$10.0 \mathrm{~g} \mathrm{NO} \times \frac{1 \mathrm{~mol} \mathrm{NO}}{30.01 \mathrm{~g} \mathrm{NO}} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{NO}} \times \frac{76.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{3}}$

$$
25.3 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{3}
$$

$14.0 \mathrm{~g} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{NO}}{46.01 \mathrm{~g} \mathrm{NO}} 2 \mathrm{a}$ limiting

$$
23.1 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{3}
$$

Solution Stoichiometry

- For reactions occurring in solution, the concentration and volume of reactants and products are often used instead of mass to solve solution stoichiometry problems.

Moles can be solved from concentration (molarity) and volume (Liters)

$$
\text { Molarity }=\frac{\text { moles }}{\text { volume }(L)}
$$

$$
\text { moles }=\text { Molarity } \times \text { volume }(L)
$$

$$
\text { previously: } \quad \text { moles }=\frac{\text { mass }}{\text { molar mass }}
$$

Solution Stoichiometry

What is the molarity of a solution of nitric acid if 0.216 g of barium hydroxide is required to neutralize a $20.00-\mathrm{mL}$ sample of nitric acid?
acid
$2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow$ $\begin{gathered}\text { salt } \\ \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(l)\end{gathered}$
$0.216 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{171.34 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}} 1.26 \times 10^{-3} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$
$1.26 \times 10^{-3} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2} \times \frac{2 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}} \quad 2.52 \times 10^{-3} \mathrm{~mol} \mathrm{HNO}_{3}$
Molarity $=2.52 \times 10^{-3} \mathrm{~mol} \mathrm{HNO}_{3} \times \frac{1}{0.0200} \mathbf{L}$
$0.126 \mathrm{M} \mathrm{HNO}_{3}$

Solution Stoichiometry

- A titration is a common laboratory technique that uses solution stoichiometry.
- A solution-phase reaction is carried out under controlled conditions so that the amount of one reactant can be determined with high precision.
- An indicator is a dye added to a titration to indicate when the reaction is complete.

Chapter 5

Gases

Ideal Gas Law

- The ideal gas law is the quantitative relationship between pressure (P), volume (V), moles gas present (n), and the absolute temperature (T).

$$
P V=n R T
$$

- R is the universal gas constant.
- $R=0.08206 \mathrm{~L} \mathrm{~atm}_{\mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}$: used in most gas equations (universal gas constant)

Pressure and Temperature

Units of Pressure

- 1 torr $=1 \mathrm{~mm} \mathrm{Hg}$
- $1 \mathrm{~atm}=760$ torr (exactly)
- $1 \mathrm{~atm}=101,325 \mathrm{~Pa}$ (exactly)
- 760 torr $=101,325 \mathrm{~Pa}$ (exactly)

Units of Temperature

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=\left(1.8 \times{ }^{\circ} \mathrm{C}\right)+32 \\
& { }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8
\end{aligned}
$$

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15
$$

$$
{ }^{\circ} \mathrm{C}=\mathrm{K}-273.15
$$

History and Application of the Gas Law

- Charles's Law: $\boldsymbol{T} \propto \boldsymbol{V}$

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

- Boyle' s Law: $P \propto 1 / V$

$$
P_{1} V_{1}=P_{2} V_{2}
$$

- Avogadro’ s Law: $\boldsymbol{n} \propto \boldsymbol{V}$

$$
\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
$$

- The empirical gas laws led to the ideal gas law.

$$
P V=n R T
$$

Which of the following relationships are true for gases?
i) The number of moles of a gas is inversely proportional to its volume (at constant pressure and temperature). Wrong
ii) The pressure of a gas is directly proportional to its temperature in kelvins (at constant volume). True
iii) The volume of a gas is inversely proportional to its pressure (at constant temperature). True

$$
\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
$$

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Example Questions

At constant temperature, $14.0 \mathrm{~L}^{2}$ of O_{2} at 0.882 atm is compressed to 1.75 L . What is the final pressure of O_{2} ?

$$
P_{1} V_{1}=P_{2} V_{2}
$$

$$
P_{2}=\frac{P_{1} V_{1}}{V_{2}} \quad \begin{aligned}
& P_{1}=0.882 \mathrm{~atm} \\
& V_{1}=14.0 \mathrm{~L} \\
& V_{2}=1.75 \mathrm{~L}
\end{aligned}
$$

7.06 atm

Partial Pressure

- Dalton' s law of partial pressures: The total pressure (P) of a mixture of gases is the sum of the partial pressures of the component gases (P_{i}).

$$
P=\sum_{i} P_{i} \quad P_{i}=\frac{n_{i} R T}{V} \quad P=\sum_{i} P_{i}=\sum_{i} n_{i} \frac{R T}{V}
$$

- Daltons Law can be expressed in terms of mole fraction.
- Mole fraction $\left(X_{i}\right)$ for a gas in a gas mixture is the moles of the gas $\left(n_{\mathrm{i}}\right)$ divided by the total moles of the gases present.
- The partial pressure of each gas is related to its mole fraction.

$$
\begin{gathered}
X_{i}=\frac{n_{i}}{n_{\text {total }}} \quad \Rightarrow \quad P_{i}=X_{i} P \\
\frac{P_{i}}{P}=\frac{n_{i}(R T / V)}{n_{\text {total }}(R T / V)}=\frac{n_{i}}{n_{\text {total }}}=X_{i}
\end{gathered}
$$

A mixture of He and O_{2} is placed in a 4.00 L flask at $32^{\circ} \mathrm{C}$. The partial pressure of the He is 3.4 atm and the partial pressure of the O_{2} is 2.6 atm . What is the mole fraction of O_{2} ?

$$
\begin{aligned}
& P=\sum_{i} P_{i}=P_{O 2}+P_{H e}=3.4 \mathrm{~atm}+2.6 \mathrm{~atm}=6.0 \mathrm{~atm} \\
& \frac{P_{i}}{P}=\frac{n_{i}(R T / V)}{n_{\text {total }}(R T / V)}=\frac{n_{i}}{n_{\text {total }}}=X_{i} \quad X_{O 2}=\frac{P_{O 2}}{P}=\frac{2.6}{6.0}=0.43
\end{aligned}
$$

Stoichiometry of Reactions Involving Gases

- For reactions involving gases, the ideal gas law is used to determine moles of gas involved in the reaction.
- Use mole ratios (stoichiometry)
- Connect number of moles of a gas to its temperature, pressure, or volume with ideal gas law

$$
P V=n R T
$$

What volume of O_{2}, measured at $91.2^{\circ} \mathrm{C}$ and 743 mm Hg , will be produced by the decomposition of $4.88 \mathrm{~g} \mathrm{KClO}_{3}$? $(\mathrm{R}=0.08206$
$\mathrm{L} \cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}$)
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
$\frac{n_{K C O O}}{n_{O 2}}=\frac{2}{3} \quad n_{O 2}=\frac{3 \times n_{\text {KClO }}}{2}=\frac{3 \times n_{\text {KClO3 }}}{2}=\frac{3 \times 4.88 \mathrm{~g} \times \frac{1 \mathrm{~mole}}{122.5495 \mathrm{~g}}}{2}=0.0597 \mathrm{~mol}$
$\boldsymbol{P V}=\boldsymbol{n} \boldsymbol{R} \boldsymbol{T} \quad \boldsymbol{V}=\frac{\boldsymbol{n} \boldsymbol{R} \boldsymbol{T}}{\boldsymbol{P}} \begin{gathered}T=91.2+273.15=364.4 \mathrm{~K} \\ P=743 \mathrm{~mm} \times \frac{1 \mathrm{~atm}}{760 \mathrm{~mm}} \\ =0.978 \mathrm{~atm}\end{gathered}$
1.83 L

Postulates of the Kinetic-Molecular Model

- Gases are made up of large collections of particles, which are in constant, random motion.
- Gas particles are infinitely small and occupy negligible volume.
- Gas particles move in straight lines except when they collide with other particles or with the container walls. These collisions are elastic, so kinetic energy of particles is conserved.
- Particles interact with each other only when collisions occur.
- The average kinetic energy of a gas is proportional to the absolute temperature of the gas but does not depend upon the identity of the gas

Breaking of the ideal gas law

- The ideal gas model breaks down at high pressures and low temperatures.
- high pressure: volume of particles no longer negligible
- low temperature: particles move slowly enough to interact

Chapter 6

The Periodic Table and Atomic Structure

The Wave-Particle Duality of Light

- The product of the frequency and wavelength is the speed of light.

$$
c=\lambda v
$$

- $c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- The energy of a photon (E) is proportional to its frequency (v).
- and is inversely proportional to the wavelength (λ).
- $h=$ Planck' s constant $=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

$$
E=h v \quad c=\lambda v \quad E=h v=\frac{h c}{\lambda}
$$

When a hydrogen atom undergoes a transition from $n=2$ to n $=1$, it emits a photon with wavelength $\lambda=121.6 \mathrm{~nm}$. What is the energy of a 1 mole of photons of this light?

$$
\begin{aligned}
& E=h v=\frac{h c}{\lambda}=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \times 2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{121.6 \times 10^{-9} \mathrm{~m}}=1.633 \times 10^{-18} \mathrm{~J} \\
& E_{\text {mol }}=1.633 \times 10^{-18} \mathrm{~J} \times 6.022 \times 10^{23}=9.838 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

Quantum numbers

n Principle quantum number - shell
l Secondary quantum number - subshell
$\boldsymbol{m}_{\boldsymbol{l}} \quad$ Magnetic quantum number - subshell direction
$\boldsymbol{m}_{\boldsymbol{s}} \quad$ Spin quantum number - spin direction
principal quantum secondary quantum
$n=1,2,3, \ldots$ number $(\boldsymbol{n}) \quad$ number (\boldsymbol{l})
$l=0,1,2, n-1$
$m_{l}=-l, \ldots 0, \ldots l$
$m_{s}= \pm 1 / 2$
indicates the principal shell of the orbital.
indicates the subshell of the orbital.

Which of the following represents invalid set of quantum numbers?
a) $n=3, l=2, m_{l}=-2$,
b) $n=2, I=1, m_{l}=0$,
c) $n=3, I=3, m_{l}=3$,
d) $n=4, l=3, m_{l}=3$
e) $n=5, l=0, m_{l}=0$

$$
\begin{aligned}
& \boldsymbol{n}=1,2,3, \ldots \\
& \boldsymbol{l}=0,1,2, \boldsymbol{n}-1 \\
& \boldsymbol{m}_{\boldsymbol{l}}=-\boldsymbol{l}, \ldots \mathbf{0}, \ldots \boldsymbol{l} \\
& \boldsymbol{m}_{\boldsymbol{s}}= \pm \mathbf{1} / \mathbf{2}
\end{aligned}
$$

Quentun Nunders

Principal level (specified by n)
$n=2$
$2^{2}=4$
$n=1$
$1^{2}=1$

Sublevel
(specified by l)

- the number of sublevels within a level $=n$.
- the number of orbitals within a sublevel $=2 l+1$.
- the number of orbitals in a level $=n^{2}$.

Letter designations for the secondary quantum number

ℓ-value	0	1	2	3	4
Letter Designation	s	p	d	f	g

Electron Configuration

Pauli Exclusion Principle: no more than two electrons can occupy any orbital

Aufbau Principle: Lower-energy orbitals fill before higherenergy orbitals.

Hund' s rule: Fill a set orbitals of same energy with electrons singly, with parallel spins, before pairing starts.

Electron Configurations

Aufbau Principle: order of electron filling 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

s subshell: 1 orbital, 2 electrons
p subshell: 3 orbitals, 6 electrons
d subshell: 5 orbitals, 10 electrons
f subshell: 7 orbitals, 14 electrons

Write the ground state electron configuration for iron.
a) $[A r] 4 s^{2} 4 p^{6}$
b) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$
c) $[\mathrm{Ar}] 3 \mathrm{~d}^{8}$
d) $[A r] 4 s^{2} 3 d^{5} 4 p^{1}$ e) $[K r] 4 s^{2} 3 d^{6}$

${ }_{26} \mathrm{Fe}$

Orbitals Fill in the Following Order: 1s $2 s 2 p 3 s 3 p 4 s 3 d 4 p 5 s 4 d 5 p 6 s 4 f 5 d 6 p 7 s 5 f 6 d 7 p$
${ }_{26}$ Fe: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$
[Ar] $4 s^{2} 3 d^{6}$

Valence Electrons and Core Electrons

Si has 4 valence electrons (those in the $n=3$ principal shell) and 10 core electrons.

Si

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}
$$

$$
\text { Core } \int_{\left[\mathrm{Ne]} \mathrm{3} \mathbf{s}^{2} 3 \mathbf{p}^{2}\right.}^{\sim} \text { Valence }
$$ electrons electrons

Valence electrons: electrons in the outermost shell [the shell with the highest principal quantum number(s), n].

How many valence electrons are in selenium?
a) 1
b) 2
c) 4
d) 6
e) 8

${ }_{34} \mathrm{Se}$

Orbitals Fill in the Following Order: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p
${ }_{34} \mathrm{Se}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{4}$

$$
[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{4}
$$

Which element has the electron configuration $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$?

$$
\begin{gathered}
\text { a) } \mathrm{Co} \quad \text { b) } \mathrm{Zn} \quad \text { c) } \mathrm{Ga} \quad \text { d) } \mathrm{Ag} \quad \text { e) } \mathrm{Cu} \\
{[\mathrm{Ar}] 4 s^{1} 3 d^{10}} \\
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}
\end{gathered}
$$

${ }_{29} \mathrm{Cu}$

Ionization Energy

© Cengage Learning. All Rights Reserved.

- Graph of the first ionization energy (in $\mathrm{kJ} / \mathrm{mol}$) vs. atomic number for the first 38 elements.
Q. Arrange these elements based on their increasing first ionization energies.
I.E. Increase Se, Ge, K, S

Se, S, Group 6A (same group) $\mathrm{Se}<\mathrm{S}$

Se, Ge, K, Row 4 (same period) بِ $\mathrm{K}<\mathrm{Ge}<\mathrm{Se}$
$\mathrm{K}<\mathrm{Ge}<\mathrm{Se}<\mathrm{S}$

		I.E. Increase						
	\%	28	3	${ }^{4}$	${ }^{51}$	${ }^{6}$	7A	нe
	\bigcirc	$\stackrel{\text { be }}{ }$	${ }_{8}$	¢	$\stackrel{\text { i }}{ }$:	${ }_{\text {\% }}$	$\mathrm{Ne}^{\text {e }}$
	${ }_{\text {Na }}$	${ }_{\text {Ms }}$	${ }^{\text {a }}$	${ }_{\text {si }}$	${ }_{p}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { a }}{ }$	$\stackrel{\text { ar }}{ }$
	${ }^{0}$	${ }_{\text {Ca }}$	${ }_{\mathrm{ca}}^{0}$	${ }_{\text {ce }}$	\bigcirc	se	${ }_{\text {Br }}$	$\stackrel{\circ}{\text { kt }}$
	O	st	O	Sn	sb	${ }_{\text {re }}$	i	xe
			II	po		\bigcirc	-	-

