CDA 3103: Study Set 6

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Review: Datapath

The MIPS ISA is called a RISC (reduced instruction set computer). We only developed the
datapath for some of the MIPS instructions we know.

RISC Instruction Set:
R-Types: Add, Subtract, And, Or, Slt

I-Types: Add Immediate, And Immediate, Or Immediate, Load Word, Store Word, Branch if Equal
J-Types: Jump

o Instruction [25-0] /¢, .o Jump address [31-0]
e left2)
Review: Datapath T T

Add .

In the single cycle datapath each
instruction is fetched and processed in

RegDst
Jump
Branch

one clock cycle. rsctonize)| [emeiead
——————————Control ALUOp

The Program Counter (PC) is a register [A
that contains our current address in | e
instruction memory. This is the location | [Read | | B g
of our next instruction. sncion | I P s

(s1-0] F4Y M| |write Read Addresshead (i
The instruction comes out of memory memory” | |fostucion(to-1)| & | regser S22 u
on a 32-bit bus. We split the wires of "\ data_Registers| ||| wie, Date |
this bus to several different locations. rorcion(1501 | 16 (g 2 |
The six most significant bits [bits 31-26] w B @ '
for all instructions types are the opcode, et 0
we send these bits to the control unit.

o Instruction [25-0] /¢, .o Jump address [31-0]
e left2)
Review: Datapath T T

Add .

The next five bits [bits 25-21] are sent to

. RegD
the register file to identify the first Jomp.
register we will be reading from. We | MhiemAead
always do this, even if the instruction eton 9129 Control [merores
does not need to read any registers. [homiie
RegWrite
The same is true for the following five instruction 25-21] [Fraag
bits [bits 20-16]. In most of our - Raress o :ﬂiﬁ*ﬂ”dﬁﬁ
instructions (add, sub, and, or, slt, sw, instruction | 4| Y register 2
. 31=0 .
and beq) we will need the data from L remsonrtor| o e daess AddressPead)
these two registers. == " | wiite ! X
data Registers Write Data
For a lw instruction, these five bits | o (e data N
specify the destination. So we also send meeon o s St L i
these five bits through a multiplexor to U
the write register. Instruction [5-0]

o Instruction [25-0] /¢, .o Jump address [31-0]
¢ left2)
Review: Datapath T T

Add .

The next five bits [bits 15-11] are sent to

RegDst
the write register multiplexor. In R-Type :

Jump
Branch

instructions, this will be the register that nstruction (31-26] CDM\ —
. — [&
receives a new value. A0
/ ALUSrc
The 16 least significant bits [bits 15-0] rege
. . . Instruction [25-21] | gaag
are also sent to the sign extension unit [Read | rogister 1 peag
. . . i data 1
to form a sign-extended immediate ——" m-:'“*‘”*‘”“”-“{_‘f] o Road —
when its needed (addi, Iw, sw, and beq). et netucion (1511 | e Gata? Address” g i
memory =k _ u
Write !
The 6 least significant bits [bits 5-0] are data_Registers wite, Data
. ata
also sent to the ALU control. These will S (aam)
] [15-0] 16 [sign- | 32 :
only be used for decoding R-Type) w)
instructions. |
Instruction [5-0]

o Instruction [25-0] /¢, .o Jump address [31-0]
e left2)
Review: Datapath T T

Add .

At this point, we add 4 to the PC to get

. . RegDst
set up for the next instruction. Jump
'I.I'?drj;g;ad
If our current instruction is a branch or a e Control s
. . . MemWrite
jump, this value might change a second [ALUSTe
tlme RegWrite
) Road Instruction [25-21] | Read
. . . . b " | register 1 gasg
In a jump, the 26 least significant bits 20 1| nstucton 20161 | pegq _cata
. . . . i " | register 2
[bits 25-0] will be shifted twice to the "o et e A adressRead | 3
.. . . . u i data 2 M
left. This is the same as multiplying by 4 Tmemory” | |grstictonli 1| x | reoete :
and results in a 28 bit jump address. |9t _Registers wite Data
data
We then copy over the four most il 1?%’3 e |
significant bits from the PC [bits 31-28] U
to form a complete new PC. Instruction [5-0]

Review: Datapath

The register file will produce two values
along the read data 1 and read data 2
buses. Read data 1 is always sent to the
Arithmetic Logic Unit (ALU).

The second input to the ALU depends
on the instruction. R-Type instructions
and BEQ use both register values. |-
Type instructions other than BEQ use
only one register and the other input to
the ALU is the immediate value. We use
the multiplexor between the register file
and the ALU to choose between these
two values.

Instruction [25-0] /c o\ Jump address [31-0]
LY

)

<
left 2 28

Add

PC + 4 [31-28]

.

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [31-26]
—_——

RegDst
Jump
Branch

\ MemRBead

MemtoReg

Control ALUOD

MemWrite

| ALUSre

RegWrite

Instruction [25-21] | gaag
" | register 1 Read
ulnstruetinn [20-18] Reag datal
y i 2
e register
M| | write ~ Read
Instruction [15-11] | ¥ [register data 2
TN | write
data Registers
Instruction [15-0] 16 @ 32

Read
Address data

+. Data
Write
data memaory|

. w .

Instruction [5-0]

Review: Datapath

The ALU will produce a result based on
the inputs provided and the ALU
operation signal from the ALU control
unit.

For most instructions, we send this
result “around” the data memory and
back to the register file.

For Iw and sw, this result is our memory
access address. In a sw, we take the
value from the read data 2 bus and
store into data memory.

Instruction [25-0] /c o\ Jump address [31-0]
LY

)

Add

left2/ >

28

.

PC + 4 [31-28]

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [31-26)
—_——

Instruction [25-21]

.| Read

RegDst
Jump
Branch

\ MemRBead

MemtoReg

Control ALUOD

MemWrite

| ALUSre

RegWrite

B IR

! L.

Instruction [20-16]

Instruction [15-11]

“wxc=

Instruction [15-0]

"| data Registers

register 1 Raad

Read data 1
register 2

write ~ Fead

register data2
Write

6 (o) 2

Read
Address data

+. Data
Write
data memaory|

. w .

Instruction [5-0]

o Instruction [25-0] /¢, .o Jump address [31-0]
¢ left2)
Review: Datapath T T

Add .

In a lw instruction, we take a value out
of memory and send it back to the
register. This creates two possible Instruction [31-26]
values for write data. We use a —"
multiplexor to choose between ALU et
result and read data. instruction 25-21] [Fraag

Read - -
" address register 1 peag
‘Instruciinn [20-18] Read datal
Instruction register 2
[31-0] [T L.

| wiite ~ Read
Instruction Instruction [15-11] register data 2
memory -

Write .
"| data Registers

RegDst
Jump
Branch
\ MemRBead
MemtoReg
Control ALUOD
MemWrite

Read
Address data 1

_Gxez9)

- Data
Write
data Memory|

Instruction [15-0] 16 @ 32 I

Instruction [5-0]

Review: Datapath

In a BEQ instruction, we calculate a
branch target address by shifting our
sign-extended immediate to the left
twice. This is the same as multiplying it
by four.

We then add this to the new PC value.
If the two registers we are comparing
actually are equal, then the Zero signal
from the ALU will be asserted.

If both Branch and Zero are true, we
select this branch target address to be
our new Program Counter.

Instruction [25-0] /c o\ Jump address [31-0]
LY

)

Add

<
left 2 28

PC + 4 [31-28]

.

Read
address

Instruction
[31-0]

Instruction
memory

B IR

Instruction [31-26)
—_——

Instruction [25-21]

RegDst
Jump
Branch

\ MemRBead

MemtoReg

Control ALUOD

MemWrite

| ALUSre

RegWrite

.| Read

Jnstmctiun [20-18]

register 1 Raad

Read data 1

. L.

Instruction [15-11]

Instruction [15-0]

“wxc=

register 2
write ~ Fead

register data2

| write
data Registers

6 (o) 2

Read
Address data

+. Data
Write
data memaory|

. w .

Instruction [5-0]

o Instruction [25-0] /¢, .o Jump address [31-0]
e left2)
Review: Datapath T T

Add .

All of the decisions to be made on the
datapath are controlled by multiplexors
and control signals (shown in blue).

RegDst
Jump

Branch
\ MemRBead

Instruction [31-26] Control MemtoReg
The Control Unit sets each of these Mo
signals based on the opcode in the [AL
instruction. These signals give the instruction 25-21] [Fraag
processor permission to read from data | adaress netucton 2016 7| esistert Reag
memory, write to data memory, and instruction | 1|} T o raster2
write to the register file. They also etraction| | [remucionton | & H WG coees AddressFigad (1)
specify when to use read data 2 versus memory " | wite . ,
the sign extended immediate, which o9 Registers wie, Date
register to write to, when to use

Instruction [15-0] J.ﬂ@ 32 I
memory data versus the ALU result. * w ; '
They also determine where the next PC
will come from.

Instruction [5-0]

Review: Control Signals

.

Add

)
oy

RegDst
Jump
Branch

g2 @

ALUL |4

result i I

A

\ MemBead

Y w .

Instruction [5-0]

signals based on the Opcode.

Instruction [25-0] Jump address [31-0] .
et 2 L The Control Unit sets all the control
- 26 28 | pc+4[31-28] W 1
M
u
X
-0

RegDst chooses which set of bits will
determine the write register.

nstucion 1728 | control aerioReg If RegDst is O (deasserted) we use bits
[amte 25-21 to determine the write register.
RegWirite We want to do this for I-Type
= |n$tm¢tiﬂn[25-21] | Read H t t' th t ‘t t th H t
 [Read e 1 Roag instructions that write to the register
Instruction [20~16] data 1
Inswﬁﬁi_%} 'nsru on L gg?gerz - file (addl, andl, orli, and IW)
M| | write Read Address ea 1
instructon | hnsiucton 15-11)| & *| egister 9222 L If RegDst is 1 (asserted) we use bits 15-
Writ . . .
data Registers i Data 11 to determine the write register. We
data Memory .
/‘\ want to do this for all R-Type
Instruction [15-0] 16 [sjgn- | 32 I . .
! instructions.

. ——— I

Review: Control Signals
\t“ﬂ%@;mpa:md:; ’1 L Jump determines our next Program
| M
._Ux

) da ; Counter.

oy

g2 @

ALU N

-, Addresut |\ We want to assert Jump whenever our
eqDst
Jump current instruction is a jump. Jump
Branch
_ T MemRead should be deasserted for all other
Instruction [31-26] Cnntralr MemtoReg . .
— ALUOD_ instructions.
MemWrite
| ALUSIc
ReqgWrite
Foad Instruction [25—21] | Read
register 1 . .
7|20 || fnsiuction 20-161 | pegg oot Branch is also used to determined the
Instruction | register 2
struction | 414 A I asressRead| next Program counter.
'":,2.5',,?:3" Instruction [15-11] | % [| register data2 el m
! B - 3 We want to assert Branch whenever
data memory our current instruction is BEQ. Branch
Instruction [15-0] lf_ég;a x : should be deasserted for all other
U instructions.

Instruction [5-0] _

Review: Control Signals
\‘“ﬂ%@;"‘“:“d:; L. MemRead gives the processor
. A

) Acd 5 permission to read from Data Memory.

oy

g2 @

ALL -1

Addresut [~ We want to assert MemRead whenever
the current instruction is a load word. It

RegDst
Jump
Branch

necion(a10g| [emPead should be desasserted for all other
—[J-Cnntral MemtoReg H H
ALUOD_ instructions.
MemWrite
| ALUSrc
RegWrite
Sond Instruction [25-21] | Ragg
register 1 . .
290 gcton20-18] | oy dote MemWrite gives the processor
Instruction | a4 Lo ;ﬂj‘“ fead rscroccRead | permission to write to Data Memory.
Instruction Instruction [15-11) : register data2 data ':':
memory - .
| Wite Registers e We want to assert MemWrite
m data, memory whenever the current instruction is a
nstucton(15-0)_{ 3, { sign- | 2 ! store word. It should be desasserted for
U all other instructions.

Instruction [5-0] _

Review: Control Signals
\mtm%i@gmpmm 2 L MemtoReg determines which result we
] PC + 4 [31-28] W 1M
- Ux

Add [— are going to send back to the register

4+>/ ' file.

g2 @

ALUL |4

A

RegDst
Jump
Branch

\ MemBead

result
@T When MemtoReg is set to O
(deasserted), the ALU result from the

Instruction [31-26] Cnntralr MemtoReg
p.
ALIOp_ Arithmetic Logic Unit will be sent to the
[acusee write data input of the register file. We
_ recioni2s-21] (= wa nt to.do this for all R-Typg |
b1 adaress , register 1 Reag instructions and any I-Type instructions
Instruction [20-16] Reag datal . . .
Instruction T o | reaster2 that write to the register file.
(31-0] [T M| | write Read Addresshead 1
Instruction | | linstruction [15-11) | ¥ [register data2 data ':'J' .
memory 0 | wiie X When MemtoReg is asserted, the value
| d . .
—Replaters Wite O from data memory will be sent to the
Instruction (15-0) Js_@h % I register file. We want to do this if the
) w) instruction is a load word.

Instruction [5-0] _

Review: Control Signals

.

Add

)
oy

RegDst
Jump
Branch

g2 @

ALUL |4

result i I

A

\ MemBead

Y w .

Instruction [5-0]

determines the second input for the
Arithmetic Logic Unit. It has to choose
between read data 2 and the sign-
extended immediate value.

Instruction [25-0] Shift Jump address [31-0] .
N a D ALUSrc stands for ALU source. This
\ oo left 2/ > e+ 4 o128 /1 L.a
M
u
X
e)

Instruction [31-26] | MemtoReq .
e convol g = If ALUSrc is set to O (deasserted) then
[acusee we will choose read data 2. We want to
retcion 2521] [do this for all R-Types and BEQ.
o ;Tt?:r%ss) register 1 Read .
_ . ea
scton | L | s If ALUSrc is set to 1 (asserted) then we
a1-0] [T M| |wie Read AddressRead | (i will choose the sign-extended
Instruction | | |instruction [15-11] | ¥ [| register data2 ':'J' . . .
memory 0 | wrie x immediate value. We want to do this
data Registe . HI H H
Panten Wite O for the remaining I-Types (addi, andi,
Instruction [15-0] 1{@ 32] orl, |W, and SW).

. ——— I

Review: Control Signals

Instruction [25-0] Shift Jump address [31-0] . .
\ etz ~aui RegWrite gives the processor
\ aae [Pova-as ﬂ ﬂ permission to write to the register file.
X X
ALU .~ - . .
resu i 0
“"/ Addresuit— \. We want to assert this control signal
RegDst .
Jump whenever we need to write to the
B h . .
o racton 31 Dienficas register file:
—._ruchcm[= Control LASLT{:IJZHEQ o A” R T
fMemWrite -lypes
Ao > Add Immediate
Read nstruction [25-21]_, | Read > And Immediate
| aoees Instruction [20-16] eoser dlg?aal‘:ll .
} - R o
nongion | |1 T aber2 - Or Immediate
i R ress ea o
Instruction | | |instruction [15-11) ag f;';it;e, da?a?g Address’ ot ::,: Load Word
memory =1 | El."rtite x
ata Regi .
egisters El;r‘gemgl:‘t:w
instruction [15-0) 1{@ % | We want to deassert this signal for all
e other instructions.

I Instruction [5-0]

Example: Control Signals

Instruction [25-0] Shift),.
. \ 26

Jump address [31-0]

left2/
28 | pc+4[31-28]

.

>Add
£

Read
address

Instruction
[31-0]

Instruction
memory

U L.

Instruction [31-26]
—_—

Instruction [25-21]

RegDst
Jump
Branch

ALU

L.

- w2 9
e

Add

result

\ MemBead

|

| MemtoReq

Control ALUOD

MemWrite

| ALUSIC

RegWrite

_ | Read

Instruction [E_D-I 6]

register 1 gaaq

Read data 1

register 2

write ~ Pead

()

register data2

Instruction [15-11]

“xc=

Write
data Registers

Instruction [15-0]

6 (agn) 2

“RCEZ

Read
Address data

: Data
Write
data Memory

Y w .

Instruction [5-0]

==

How should the control signals be set
for an addi instruction?

Given:

Example: Control Signals

Instruction [25-0] J dd [31-0] .
e ”&;E@\E;m” o L How should the control signals be set Given:
\ [PO+ 4[31-28] ul T for an addi instruction?
>“) ' d
4 — nddl;a‘lall-.lt = 1 =
RegDst
Jump The first control signal is RegDst. Our Partial
Branch L
_ [MemRead instruction — addi — is an I-Type Credit 1:
Instruction [31-26] Control MemtoReg
I = instruction with the following format:
emyvrie
| ALUS
g op | rs | rt constant
Instruction [25-21]
""Et?t?r%ss ’ 2?;?3.9;1 Read . . . bi
Instruction (20-16] | pegg data 6 bits 5 bits 5 bits 16 bits
Instruction | 1| | register 2
e T—'aﬁu wie Read adressF2d o This tells us the destination register is
nstruction ' reqgister . o .
]| S e ; specified by bits 20-16. So we should
data_Registers Wiite_Data set RegDst to 0 to let bits 20-16 specify
data TN the write register.
Instruction [15-0] 16 [gign. | 32 i
w RegDst = 0. Solution 1:
Instruction [5-0]

i ——— I

Example: Control Signals
\‘“ﬂ%@;"‘”:tzz L How should the control signals be set given:
. A

g [for an addi instruction?

>Ad)\
£

Instruction [31-26]
—_—

= 2

A

ALU -1
RegDst
Jump
Branch

result i
T :l) The next control signal is Jump. Since Partial

Control HaemioReg our instruction —addi —is not a jump Credit 2:

ALUCD
Fabee instruction, this signal should be set to
RegWrite O-

Instruction [25-21]
| Road * g?;?gem
address Read
Instruction [20-16] | peag data
Instruction | register 2
e L...
[31-0] M| | write Read

Instruction | | |instruction [15-11) register data2
memaory >

Read
Address data

s
==

Write
data Registers

: Data
Write
data Memory

i 16 m 32
Instruction [15-0] _{Ka:j & @ i Jump =0. Solution 2:

I Instruction [5-0]

Example: Control Signals
\‘“ﬂ%@;"‘”:tzz L How should the control signals be set given:
. A

g [for an addi instruction?

>Ad)\
£

Instruction [31-26]
—_—

= 2

A

ALU -1
RegDst
Jump
Branch

result -
T :l) The next control signal is Branch. Since partial

Control [emioReg our instruction —addi —is not a branch Credits:

ALUCD
Fabee instruction, this signal should be set to
RegWrite O-

Instruction [25-21]
| Road * g?;?gem
address Read
Instruction [20-16] | peag data
Instruction | register 2
e L...
[31-0] M| | write Read

Instruction | | |instruction [15-11) register data2
memaory >

Read
Address data

s
==

Write
data Registers

: Data
Write
data Memory

Instruction [15-0] 16 @ 32 I . .
@ » @ | Branch = 0. Solution 3:

I Instruction [5-0]

Example: Control Signals
\‘“ﬂ%@;"‘”:tzz L How should the control signals be set given:
. A

g [for an addi instruction?

>Ad)\
£

Instruction [31-26]
—_——

g2 @

A

ALU -1
RegDst
Jump
Branch

result -
T :l) The next control signal is MemRead. Partial

Control [oermioRieg Since our instruction —addi —is not a Credit 4:

ALUDp

Fabee load word instruction, this signal should

Aegiirte be set to 0.

Instruction [25-21] | Ragg
register 1 Read
Instruction [20-16] | Reag ~ data
Instruction | register 2

s] L...

[31-0] M| | write Read
Instruction | | |instruction [15-11) register data2
memory -

Write

data Registers

Read
address

Read
Address data

s
==

i Data
Write
data Memory

Instruction [15-0] 16 @ 32 I . .
\‘@ < @ | MemRead = 0. Solution 4:

I Instruction [5-0]

Example: Control Signals
\‘“ﬂ%@;"‘”:tzz L How should the control signals be set given:
. A

g [for an addi instruction?

>Ad)\
£

Instruction [31-26]
—_——

g2 @

A

ALU -1
RegDst
Jump
Branch

result i
T :l) The next control signal is MemtoReg. Partial

Control [oermioRieg Since our instruction —addi —is not a Credit 5:

ALUDp

Fabee load word instruction, this signal should

Reghirte be set to O.

Instruction [25-21] | Ragg
register 1 Read
Instruction [20-16] | Reag ~ data
Instruction | register 2

s] L...

[31-0] M| | write Read
Instruction | | |instruction [15-11) register data2
memory -

Write

data Registers

Read
address

Read
Address data

s
==

i Data
Write
data Memory

Instruction [15-0] JP_@ :\3? @ i MemtOReg =0. Solution 5:

I Instruction [5-0]

Example: Control Signals

Instruction [25-0] Jump address [31-0] .
—v@\ L How should the control signals be set Given:
" 26 28 | pC+4[31-28) 0 ! . PR
\ aae [| ’.‘} .& for an addi instruction®
X X
4 / Add Sy i ! g
RegDst
Jump . .
Branch :l) The next control signal is ALUOp. For Partial
\ MemBead =<
Aostoton 122 control ooried this signal we need to consider what Credit 6:
e action the ALU should perform. With
RegWiite an addi instruction, we expect the ALU
| [Read | |[p e e to perform an addition operation.
Instruction [20-16] | Raag data
Instruction | register 2
*31-0) o1t T_"u Wwiite Read AddressRe3d L.
Instruction Instruction [15-11) : register data2 data ':':
memory TN write)
~| data Regi)
egisters El;r‘gemgl:‘t:w
Instruction [15-0] JF_@ 2 @ } Solution 6:
ALUOp = add.
Instruction [5-0]

. ——— I

Example: Control Signals
\‘“ﬂ%@;"‘”:tzz L How should the control signals be set given:
. A

g [for an addi instruction?

>Ad)\
£

Instruction [31-26]
—_——

g2 @

A

ALU -1
RegDst
Jump
Branch

result -
T :l) The next control signal is MemWrite. Partial

Control [oermioRieg Since our instruction —addi —is not a Credit 7:

ALUDp

Faae® store word instruction, this signal

RegWrite should be set to 0.

Instruction [25-21]
| Road * g?;?gem
address Read
Instruction [20-16] | peag data
Instruction | register 2
e L...
[31-0] M| | write Read

Instruction | | |instruction [15-11) register data2
memaory >

Read
Address data

s
==

Write
data Registers

i Data
Write
data Memory

Instruction [15-0] 16 @ 32 I . . .
\‘@ < @ | MemWrite = 0. Solution 7:

I Instruction [5-0]

Example: Control Signals

Instruction [25-0] Jump address [31-0] .
—v@x L How should the control signals be set Given:
- 26 28 | pc+4[31-28] 0 1 . PR
\ A I | v ﬂ for an addi instruction?
X X
4 —r-/ Addl;slald = 1 =
RegDst
Jump . . .
B :l) The next control signal is ALUSrc. Since partial
Aostoton 122 control ooried our instruction —addi —seeks to add a Credit&
[aemiVite register and a constant value together
RegWrite we should send the sign-extended
| [Read | |[p e e immediate as the second input to the
||| qlnstruction [20-16] | peag a2 ALU. To do this we need to set ALUSrc
Instruction | 111 L register 2
[31-0] M| | write Read Address"¢ad 1 to 1.
Instruction Instruction [15-11) : register data2 data ':':
memory TN | write X
™| data Regi X
egisters El;r‘gemgl:‘t:w
instruction [15-0] 1\3_@ G @ | ALUSrc = 1. Solution 8.

Instruction [5-0] _

Example: Control Signals

Instruction [25-0] Jump address [31-0] .
—w—@\ L How should the control signals be set Given:
- 26 28 | pc 4 a31-28) 0 1 .. PR
\ A [| u u for an addi instruction®
X X
4 —r-/ A ::lei}ijt | 1 ()
RegDst
Jump . . .
s :l) The last control signal is RegWrite. Partial
Aostoton 122 control ooried Since our instruction — addi — seeks to ~ Credit9:
[aemiiile store the result of the add in the
RegWrite register file, we should assert this
Instruction [25-21] [Read . .
[Fead | oot 1 Fen signal. This allows the processor to
Instruction [20~16] R data 1 1 1 1
o o s write to the register file.
[31-0] M| | write Read Addressﬂjaid 1
Instruction | | linstruction [15-11) | % [| register data 2 ald "
== TN write X
*| data Registe X
egisters E‘;’i';‘*mgﬁa‘:w
Instruction [15-0] 1'{@ 32 I . .
) w ‘ @ | RegWrite = 1. solutlon 9

Instruction [5-0] _

Example: Control Signals

Instruction [25-0] Shit).,
. \ o5

Jump address [31-0]

left2/
28 | pc+4[31-28]

.

>Add
oy

Read
address

Instruction
[31=0]

Instruction
memory

U L.

Instruction [31-26]
e ——

Instruction [25-21]

RegDst
Jump
Branch

ALU

L.

= gz @
e

Add

result

\ MemBead

L i

| MemtoReq

Control ALUOD

MemWrite

| ALUSIC

RegWrite

_ | Read

Instruction [E_D-I 6]

register 1 gaaq

Read data 1

register 2

write ~ PRead

()

register data2

Instruction [15-11]

“xc=

Write
data Registers

Instruction [15-0]

6 (agn) 2

“RCEZ

Read
Address data

- Data
Write
data Memory|

Y w .

Instruction [5-0]

xe="

How should the control signals be set
for a lw instruction?

Given:

Example: Control Signals

Instruction [25—0] J ddress [31-0] .
" "“—v@mp = L How should the control signals be set Given:
\ PN B |peeapi-g 0 1 for a lw instruction?
>Add : e M M r
X X
4 "‘/ Add, St {1 -0
RegDst
San @T The first control signal is RegDst. Our Partial
. \MemAead instruction — lw —is an I-Type Credit 1.
Instruction [31-26] MemtoReg
| oome! [ALUop instruction with the following format:
| MemWrite
ALUSKc
I op | rs | rt constant
Sond Instruction [25-21] Read 1
- register
address instruction 20181 | pogg 9ata 1 6 bits 5 bits 5 bits 16 bits
Instruction | 1| | register 2
e T—'aﬁu wie Read adressF2d o This tells us the destination register is
nstruction 1 ' reqgister . o .
]| S e ; specified by bits 20-16. So we should
data_Registers wite, Data | set RegDst to 0 to let bits 20-16 specify
/‘\ o the write register.
Instruction [15-0] 16 [gign. | 32 I
Al @ | RegDst = 0 Solution 1
= U Solution 1:
Instruction [5-0]

i ——— I

Example: Control Signals
\‘“ﬂ%@;"‘”:tzz L How should the control signals be set given:
. A

g [for a lw instruction?

>Ad)\
£

Instruction [31-26]
—_—

= 2

A

ALU -1
RegDst
Jump
Branch

result i
T :l) The next control signal is Jump. Since Partial

Control HaemioReg our instruction — Ilw —is not a jump Credit 2:

ALUCD
Fabee instruction, this signal should be set to
RegWrite O.

Instruction [25-21]
| Road * g?;?gem
address Read
Instruction [20-16] | peag data
Instruction | register 2
e L...
[31-0] M| | write Read

Instruction | | |instruction [15-11) register data2
memaory >

Read
Address data

s
==

Write
data Registers

: Data
Write
data Memory

i 16 m 32
Instruction [15-0] _{Ka:j & @ i Jump =0. Solution 2:

I Instruction [5-0]

Example: Control Signals
\‘“ﬂ%@;"‘”:tzz L How should the control signals be set given:
. A

g [for a lw instruction?

>Ad)\
£

Instruction [31-26]
—_—

= 2

A

ALU -1
RegDst
Jump
Branch

result -
T :l) The next control signal is Branch. Since partial

Control [emioReg our instruction — Iw —is not a branch Credit 3:

ALUCD
Fabee instruction, this signal should be set to
RegWrite O.

Instruction [25-21]
| Road * g?;?gem
address Read
Instruction [20-16] | peag data
Instruction | register 2
e L...
[31-0] M| | write Read

Instruction | | |instruction [15-11) register data2
memaory >

Read
Address data

s
==

Write
data Registers

: Data
Write
data Memory

Instruction [15-0] 16 @ 32 I . .
@ » @ | Branch = 0. Solution 3:

I Instruction [5-0]

Example: Control Signals
\‘“ﬂ%@;"‘”:tzz L How should the control signals be set given:
. A

g [for a lw instruction?

>Ad)\
£

Instruction [31-26]
—_——

g2 @

A

RegDst
Jump

ALL -1
Branch

result -
T :l) The next control signal is MemRead. Partial

[MeentoReg Since this is a load word instruction, Credit 4:

Control ALUOD

Fabee this signal should be set to 1.

RegWrite
Instruction [25-21]
| Road * g?;?gem
address Read
Instruction [20-16] | peag data
Instruction | register 2
e L...
[31-0] M| |write Read Address' 220 (w1
Instruction Instruction [15-11) : register data2 E
memory - _ u
- Write
data Registers \iite Data
data Memory _
MemRead = 1.

Instruction [15-0 16 m 32 I .
Lia S| ign | Solution 4:

I Instruction [5-0]

Example: Control Signals

Instruction [25-0] Jump address [31-0] .
\ —;@; =1 4 How should the control signals be set given:
\ ade [Pova-as (ﬂ " for a lw instruction?
- u u
X X
4 —r-/ A ::lei}ijt {1 =
RegDst
Jump . .
Branch :l) The next control signal is MemtoReg. Partial
) 'I.rMemFlead .] . : =
Instuction 31728 controt {aemtoReg Since our instruction is a load word Credit 5:
ALUDp . .]]
[aemiiile instruction, this signal should be set to
RegWrite 1. This tells the processor to send the
| [Fead e value obtained from memory back to
Instruction [20~16] R data 1 1 1
N o s the register file.
(31-0] M | write Read Addressﬂjaid 1
Instruction | | linstruction [15-11) | % [| register data 2 ald "
== TN write X
™| data Reqi)
egisters El;r‘gemgl:‘t:w
Instruction [15-0] 16 @ 32 I .
S e | Solution 5:
w @ MemtoReg = 1.

Instruction [5-0] _

Example: Control Signals

Instruction [25-0] Jump address [31-0] .
\ —;@; =1 4 How should the control signals be set given:
\ ace [[| S (ﬂ " for a lw instruction?
- I
4 —r-/ Addl;slall-]l = 1 =
RegDst
Jump . .
B :l) The next control signal is ALUOp. For Partial
InStruction 31281 controt FemioRieg this signal we need to consider what Credit 6:
ALUDp. . .
[aemiVite action the ALU should perform. With a
RegWrite lw instruction, we expect the ALU to
| [Read | |[p e e perform an addition operation in order
nsion | L s Read o2 to add the base address and the offset
(31-0] 47 M| | wie Read AddressRead L together to get our final memory
Instruction Instruction [15-11) : register data2 |:.Ju
memory “0) | e X address.
*| data Registe X
egisters E';r‘gemgﬁmt:w
Instruction [15-0] 16 @ 32 I . .
= ext%:d * I Solution 6:
e ALUOpP = add.
Instruction [5-0]

. ——— I

Example: Control Signals
\‘“ﬂ%@;"‘”:tzz L How should the control signals be set given:
. A

g [for a lw instruction?

>Ad)\
£

Instruction [31-26]
—_——

g2 @

A

ALU -1
RegDst
Jump
Branch

result -
T :l) The next control signal is MemWrite. Partial

Control [aeioReg Since our instruction —Iw —is not a Credit 7:

ALUDp

Faae® store word instruction, this signal

RegWrite should be set to 0.

Instruction [25-21]
| Road * g?;?gem
address Read
Instruction [20-16] | peag data
Instruction | register 2
e L...
[31-0] M| | write Read

Instruction | | |instruction [15-11) register data2
memaory >

Read
Address data

s
==

Write
data Registers

i Data
Write
data Memory

Instruction [15-0] 16 @ 32 I . . .
\‘@ < @ | MemWrite = 0. Solution 7:

I Instruction [5-0]

Example: Control Signals

Instruction [25-0] Jump address [31-0] .
\ —;@; =1 4 How should the control signals be set given:
\ ace [[| S (ﬂ " for a lw instruction?
- u u
X X
4 —-/ Add, St {1 =0
RegDst
Jump . . .
s :l) The next control signal is ALUSrc. Since partial
Aostoton 122 control ooried our instruction — Iw — seeks to add a Credit 8:
[aemiiile register and a constant value together
RegWrite to form a memory address we should
| [Read | |[p e e send the sign-extended immediate as
Instruction [20-16] = data 1 . .
N o s the second input to the ALU. To do this
[31-0] M| |wite ~ Read AddressRead |, we need to set ALUSrc to 1.
Instruction Instruction [15-11) | % | | register data 2 |:.Ju
el TN wite ¥
™| data Regi X
egisters El;r‘gemgl:‘t:w

Instruction [15-0] 1{@ 32 @ } ALUSrc = 1. Solution 8:

Instruction [5-0]

. ——— I

Example: Control Signals

Instruction [25-0] Jump address [31-0] .
\ —;@; =1 4 How should the control signals be set Given:
j C + - . .
\ ade [o (ﬂ " for a lw instruction?
- u u
X X
4 — / add, UL —ols f—lo
RegDst
Jump . . .
s :l) The last control signal is RegWrite. Partial
Aostoton 122 control ooried Since our instruction — lw — seeks to Credit 9:
[aemiiile store the value obtained from memory
RegWrite in the register file, we should assert this
| [Read | |[p e e signal. This allows the processor to
Instruction [20-16] A data 1 1 1 1
N o s write to the register file.
(31-0] M| | write Read Addressﬂjaid 1
Instruction Instruction [15-11) : register data2 ata ':':
el TN wite ¥
*| data Registe X
egisters E';rigemgﬁat:w
Instruction [15-0] 1'{@ 32 I . .
) w ‘ @ | RegWrite = 1. solutlon 9

Instruction [5-0] _

Review:

Pipelining

Pipelining allows us to overlap

instructions in execution. When
an instruction finishes the first
stage and moves on to the
second stage, the next
instruction can start the first
stage. M

This increases our throughput:
the number of instructions we
can complete in a certain
amount of time.

PCSrc
ID/EX
f w8 LEX/MEM
WB
Control M | MEM/WB
»| EX M WB [—
IF/ID
Add > \‘
4 Add A0
Shift resu Branch
2 left 2 L
= ALUSrc
o)
g |
0 o o
= g
PC Address S Read 5 %
X = register 1 Read - 2 £
1 E] data 1 = £
g 2?;?:1&2 zero B =
Instruction = ALU A1y Read
L . _ ead | |
memory | vurite Reg'ﬂe’stead > 0 result Address data ||| OM
register ata 2 M D
u ata u
Write X memor X
data o1 v 1
Write
data
Instruction
[15-0] 16 sign- | 32 6
\ 9 \
extend X \y control MemRead
Instruction
[20-16]
> 0
M -
Instruction u
[15-11] -
— — RegDst — —

Review:
Pipelining

A MIPS RISC has 5 stages in the
pipeline:
° Instruction Fetch (IF)

° Instruction Decode (ID)
o Execution (Ex)

Memory Access (Mem)
Write Back (WB)

o

PCSrc
ID/EX
f w8 LEX/MEM
WB
Control M | MEM/WB
IFD ™| EX i L
Add > \‘
4 Add A0
Shift resu Branch
2 left 2 L
= ALUSrc
o)
2 |
i £
= om
PC Address 5 Read % %
5 register 1 Read . 2 £
E] data 1 = £
g Fle::-'xd1 5 Zero — =
Instruction = register ALU 7Ly R
I . _ ead | |
memory | vurite Reg'ﬂe’stead > 0 result Address data ||| OM
register ata 2 M D
u ata u
Write X memor X
data o1 v 1
Write
data
Instruction
[15-0] 18 sign- | 32 6
Alg control MemRead

N extend N
Instruction

[20-16]

Instruction
[15-11]

RegDst

Review:

PCSrc
Pipelining =
/‘ > wB L,E)EM
A MIPS RISC has 5 stages in the contol |+ we | v
pipeline: » &/ i N |
o |nstruction Fetch (IF)] N]]
> During this stage, we fetch the next Add - \
instruction located in Instruction 4 (N phaa
. I Branch
Memory at PC. We send this along to £ left 2 %L,Sm L
the pipeline register to wait for the next B — .
0 = o
sta ge. E.s PC Address _é Egiager . dﬂea d R \ E %
o Also in this stage, we update PC by \ | : s ata 1 ~ | 5
adding 4 to the current PC value. "memary. Lo PO g s AU ay R i =]
. register ata u Data u
° Instruction Decode (ID) e INE /T memory 9
. Write
© ExeCUtlon (EX) Instruction dal;.
[15-0] 18 sign- | 32 6
Al control Memfead

° Memory Access (Mem)
° Write Back (WB)

N extend N
Instruction

[20-16]

Instruction
[15-11]

RegDst

Review:

Pipelining

A MIPS RISC has 5 stages in the

pipeline:
° Instruction Fetch (IF)
° Instruction Decode (ID)

° In this stage, we send the opcode to the
Control Unit and determine the control
signals for the rest of the datapath. M

> We also read from the register file in this 1
stage: setting up read data 1 and read
data 2 for the next stage.

> We also send our 16 least significant bits
to the sign-extension unit.

o Execution (Ex)
° Memory Access (Mem)
> Write Back (WB)

N extend N
Instruction

[20-16]

Instruction
[15-11]

PCSrc
ID/EX
f w8 LEX/MEM
WB
Control M | MEM/WB
»| EX M WB [—
IF/ID
Add > \‘
4 Add A0
Shift resu Branch
2 left 2 L
= ALUSrc
o)
2 |
0 =)
= g
u PC Address S Read £ T
X 5 register 1 Read . 2 £
E] data 1 = £
g Fle::-'xd1) Zero - =
Instruction = register ALU 7Ly R
I . _ ead | |
memory Write Registers pooqg > 0 result Address data ||| ’ OM
register data 2 M D
u ata u
Write X memor X
data o1 v 1
Write
data
Instruction
(15-0) 16 [sign- | 32 6
™1 control MemRead

RegDst

Review:

PCSrc
Pipelining =
f | we LEX/MEM
A MIPS RISC has 5 stages in the contol |+ we | v
pipeline: » &/ i N |
° Instruction Fetch (IF)]]]]
o Instruction Decode (ID) s - \
4 Add Add
. Shift result Branch
o Execution (Ex) : @-%US B
° In this stage we do several 6 - B e _
computations. The arithmetic logic unit u P PC - Address 5 Red read| \ E %
will perform an action based on the ! _ - SN e 2o o 2
opcode: add, subtract, and, or, slt. e oty —1 Wg_t Registers reag |, Ps ALY au o | Address Readll, | |]
> reni;er data 2 M u
> We also calculate a branch target ___g\zrii;e x memory x
address and determine the location for ' Wit
the ALU result. sructon m data
[15-0] 1? Sign- 3\2 ‘\5 -
) control MemRead

° Memory Access (Mem)
° Write Back (WB)

N extend N
Instruction

[20-16]

Instruction
[15-11]

RegDst

Review:
Pipelining

A MIPS RISC has 5 stages in the
pipeline:

° Instruction Fetch (IF)
° Instruction Decode (ID)
o Execution (Ex)
° Memory Access (Mem)
> In this stage we can access the Data
Memory. We will do this if the current
instruction is either a load word or store
word.
> We also resolve any branch decisions in
this stage.
[0}

Write Back (WB)

| MEM/WB

WB [

PCSrc
ID/EX
f w8 LEX/MEM
@l M wB
»| EX M
IF/ID
Add > \‘
4 Add A0
Shift resu Branch
2 left 2 L
= ALUSrc
o)
2 |
i £
PC Address 5 Read %
= register 1 Read - 2
3 data 1 =
g Fle::-'xd1 5 Zero —
Instruction = register ALU 7Ly R
I . _ ead
memory | vurite F"’Wsmardetead > 0 result Address data
register ata 2 M Data
Write g memor
data o1 Y
Write
data
Instruction m
[15-0] 18 sign- | 32 ‘\5 -
* | control MemRead

N extend N
Instruction

[20-16]

Instruction
[15-11]

MemtoReg

v
'
xe=©

-

RegDst

Review:
Pipelining

A MIPS RISC has 5 stages in the
pipeline:

o

o

o

Instruction Fetch (IF)
Instruction Decode (ID)
Execution (Ex)
Memory Access (Mem)
Write Back (WB)

° In the last stage, we update the register
file, if needed. We need to carry the
write destination register along with the
instruction to each pipeline stage to
make sure we write the result to correct
location.

PCSrc
ID/EX
f w8 LEX/MEM
Control M wB | MEM/WE
»| EX M WB [—
IF/ID
Add > \‘
4 Add A0
Shift resu Branch
2 left 2 L
= ALUSrc
o)
2 |
i £
= g
PC Address S Read 5 %
5 register 1 Read . 2 £
E] data 1 = £
g Fle::-'xd1 5 Zero — =
Instruction - register ALU a1y Read
memory Wit Registers pooqg > 0 result | Address data ||| =0
> reni;er data 2 M M
WQ u Data u
rite X memor X
data o1 v 1
Write
data
Instruction
(15-0) 16 [sign- | 32 6
* | control MemRead

N extend N
Instruction

[20-16]

Instruction
[15-11]

RegDst

Review: Hazards

Pipelining introduces Hazards to the datapath. These occur whenever the next instruction
cannot continue as expected. There are three situation where that might happen:

Structure hazard
° A required resource is busy

Data hazard
> Need to wait for previous instruction to complete its data read/write

Control hazard
> Deciding on control action depends on previous instruction

Review: Hazards

Structural Hazards have been dealt with in the MIPS datapath by duplicating several structural
units. We have separate instruction and data memories so that stage 1 and stage 4 do not have
to compete. There are several shifters and adders to manipulate different target addresses, so
that our next Program Counter will be ready when we need it.

Review: Hazards

Data Hazards occur whenever our current instruction has to wait for a previous instruction to
complete. Consider the following example:

add St0, Ss1, Ss2
add Ss0, St0, Szero

The second add instruction has St0 as one of the sources, but the first add instruction has St0 as
it’s result. The first add instruction will not be writing the result to S$t0 until it reaches stage 5
(write back). But the second add instruction would normally be reading when the first
instruction is in stage 3 (execution).

Review: Hazards

Data Hazard:
add St0, Ss1, Ss2
add Ss0, St0, Szero

There are a couple ways to address this. The easiest method is to stall the pipeline until the first
instruction has completed enough for the second instruction to begin. The write back stage of
the first instruction can overlap with

] . 200 400 600 800 1000 1200 1400 1600
the instruction decode stage of the ; ' - 1 T
second instruction.

bubble bubble bubble bubble bubble
© @ @ 0
bubble bubble bubble bubble bubble
© 9 O

g

Review: Hazards

Control Hazards occur whenever we have e
a branch instruction. Remember that our e oo
RISC system only supports BEQ. ot o) w | ™ | e
We won’t know until the end of stage 3 = — — —
whether or not the two values are actually . .
equal to each other. . o)
Therefore, we cannot set our next PC until | :
the BEQ instruction reaches stage 4. We R AR
won’t fetch the next instruction until our - o
BEQ instruction is in stage 4. e

fareer Z 1L e

et —‘

Review: Hazards

Similar to data hazards, the easiest method is to stall until the branch has been resolved.

Program
execution Ti 200 400 600 800 1000 1200 1400 -
order Ime T T T T T T T -
(in instructions)

add $4, 95,86 | "ge”'| |Res| AU | sciere |Fes

beq $1, $2, 40 *m—psh'"s:eﬁim Reg| ALU asﬂa;zﬁ Reg

bubbl ubbl ubbl ubble/(bubbl
bubbil ubbl ubbl ubble/(_bubbl
bubbl bubble ubbl w bubbl

or $7, $8, §9 - »|Instruction Da.ta
\ 600 ps fetch Reg Reg

Given: Consider the following assembly language code: .

0: sub $ta, $t1, $s2 [
11: add Ss3, Ss2, St4 n
12: add St1, StO, SsO

13: add &t1) 3t0, 550 7
14: sub St4, St1, Ss2 n
5: lw St5, 0(St1

16: slt St0, $s0, Ss1]
17: SW Ss2, 0(Ss0) E
For each instruction, identify whether or not a hazard E
should be detected. If so, identify the type of hazard as =
structure, data, or control. Assume the instructions are .

being processed on a MIPS pipelined datapath without
forwarding.

Given: Consider the following assembly language code: (o fnefn |w s (6 [v (e [v [mo {m [m w6 CI::(rj—tiital:

10: sub St4, St1, Ss2 ﬂ i
11: add $s3 52 t4 n
12: add St1, sO

13: add 5t1, StO 350 2 |
14: sub $t4 Stl Ss2 ﬂ
5: lw St5, 0($t1

16: slt $t0, $s0, Ss1 |
17: SW $52 O(SSO) ﬂ
For each instruction, identify whether or not a hazard ﬂ
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

Solution1: |0 no hazard Since hazards are situations that prevent an instruction from
11 — running, we assume the first instruction cannot experience a
:% hazard as there is nothing prior to it.

14
|53 We show the stages of instruction zero in the chart to track
Ig when $t4 — the destination register — will be updated.

Given: Consider the following assembly language code: (o fnefn |w s (6 [v (e [v [mo {m [m w6 CI::(rj—tiita;:

0: sub St4, St1, Ss2 ﬂ S
11: add $53 52 t4 n IF D EX MEM WB
12: add St1, sO

13: add 5t1, StO 350 2 |

14: sub $t4 Stl Ss2 ﬂ

5: lw St5, 0($t1

16: slt 5t0, $s0, $s1 |

17: SW $52 O(SSO) ﬂ

For each instruction, identify whether or not a hazard ﬂ

should be detected. If so, identify the type of hazard as

structure, data, or control. Assume the instructions are

being processed on a MIPS pipelined datapath without

forwarding.

Solution2: |0: " no hazard In instruction f)ne, -we ar(‘e trying to add St.4 an-d Ss2 to-gether.
11: —_data hazard However, St4 is being written by the previous instruction —
:% instruction zero. In the chart we can see that this value does
14: not reach the register file until T4. Since we write in the first
15: half of the clock cycle and read in the second, we can overlap
Ig the WB stage of 10 and the ID stage of I1.

Given: Consider the following assembly language code: o (nefn |w s f6 |7 |w [[mo [m [m w6 CI::(rj—tiita;:

10: sub St4, St1, Ss2 ﬂ S

11: add $53 52 t4 n IF D EX MEM WB
12: add St1, sO

13: add St1, StO SsO n IF D EX MEM ws
14: sub $t4 Stl Ss2 ﬂ

5: lw St5, 0($t1

16: slt 5t0, $s0, $s1 |

17: SW $52 O(SSO) ﬂ

For each instruction, identify whether or not a hazard ﬂ

should be detected. If so, identify the type of hazard as

structure, data, or control. Assume the instructions are

being processed on a MIPS pipelined datapath without

forwarding.

Solution3: |0 no hazard In i.nstruction two, we are trying to add St-O.and Ss0 together.
11: —_data hazard Neither of these registers have been modified by our segment
:% __ho hazard of assembly code, so this instruction should be able to
14: proceed without a hazard.
15:
16:

Given: Consider the following assembly language code: o (nefn |w s f6 |7 |w [[mo [m [m w6 c':;—tiita‘":

10: sub St4, St1, Ss2 ﬂ S T B

11: add $53 52 t4 n IF D EX MEM WB

12: add St1, sO

:z: adg gti]l_. gtg gsg n IF D EX MEM WB
: su t t S

I5- W $t5 0($t1 ﬂ IF ID EX MEM WB

16: slt 3t0, $s0, $s1 |

17: SW $52 O(SSO) ﬂ

For each instruction, identify whether or not a hazard ﬂ

should be detected. If so, identify the type of hazard as

structure, data, or control. Assume the instructions are

being processed on a MIPS pipelined datapath without

forwarding.

Solution4: |0: no hazard In instruction three, we are trying to add $t0 and $SsO together.
11: —_data hazard Even though we read these in our previous instruction these
:% 28 Eg;g;g registers have not been modified. So this instruction should be
14: able to proceed without a hazard.
15:
16:

Given:

Solution 5:

Example: Hazards
Consider the following assembly language code: o (nefn |w s f6 |7 |w [[mo [m [m w6

10: sub St4, St1, Ss2 ﬂ B R

11: add $S3 52 t4 n IF D EX MEM WB

12: add St1, sO

13: adg gtl gtg gsg n IF ID EX MEM WB

14: su t4, St S

I5- W $t5 0($t1 ﬂ IF ID EX MEM WB

16: slt $t0 Ss0, Ss1 n F D EX MEM WB

17: SW $52 O(SSO) ﬂ

For each instruction, identify whether or not a hazard ﬂ

should be detected. If so, identify the type of hazard as

structure, data, or control. Assume the instructions are

being processed on a MIPS pipelined datapath without

forwarding.

0: o hazard In instruction four, we are trying to subtract $s2 from St1. Stl
11: —data hazard was most recently modified by instruction three, which will
:% 28 Eg;gﬁg not write the value of $t1 to the register file until T9. 14 must
14: ~—data hazard wait until the same clock cycle to read the correct value of Stl.
15: - This is a data hazard.

16:

Partial
Credit 5:

Given:

Solution 6:

Consider the following assembly language code: o (nefn |w s f6 |7 |w [[mo [m [m w6 cl::;—tiitafls:

10: sub St4, St1, Ss2 ﬂ i
11: add $53 52 t4 n IF D EX MEM WB
12: add St1, sO
:z: adg gti]l_. gtg gsg n IF ID EX MEM WB
: su t t S
I5- W $t5 0($t1 ﬂ IF ID EX MEM WB
16: slt $t0 Ss0, Ss1 n F D EX MEM WB
I7: SW $52 O(SSO) ﬂ IF ID EX MEM WB
For each instruction, identify whether or not a hazard ﬂ
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.
_ In instruction five, we load a value from memory at the
10: no hazard , , _
11: —data hazard location St1 + 0 and store the result into St5. S$t1 has had time
12: __ho hazard to become stable since being written by 13.
13: no hazard
14: —_data hazard
Ig: __no hazard

Given: Consider the following assembly language code: | fo|nfn|s |w |5 s |v |s (v [mw [m [m |[n 0o CI::(rj—tiita;:

10: sub St4, St1, Ss2 ﬂ S B e
11: add $53 52 t4 IF D EX MEM WB
12: add St1, sO
:z: adg gti]l_. gtg gsg n IF D EX MEM WB

: su t t S
I5- W $t5 0($t1 ﬂ IF ID EX MEM WB
16: slt $t0 Ss0, Ss1 n F D EX MEM WB
17: SW $52 O(SSO) ﬂ

IF 1D EX MEM WB

For each instruction, identify whether or not a hazard ﬂ b
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are

being processed on a MIPS pipelined datapath without

forwarding.
Solution7: |0: no hazard In |.nstruct|on siX, we check to see if $s0 |s-lc.ess than $s1.
11: —_data hazard Neither of these registers have been modified by our segment
|12: __ho hazard of assembly code, so this instruction can proceed without
13: no hazard
14 __data hazard hazards.
|5: __no hazard
Ig: __no hazard

Example: Hazards

Given: Consider the following assembly language code:

10: sub St4, St1, Ss2
11: add $s3 52 t4
12: add St1, sO
13: add $t1 StO SsO
14: sub $t4 Stl Ss2
5: lw St5, 0($t1

16: slt $t0 Ss0, Ss1
17: SW $52 O(SSO)

For each instruction, identify whether or not a hazard

should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without

forwarding.

Solution8: |0 no hazard
11: —_data hazard
12: __no hazard
13: no hazard
14: —_data hazard
I5: __no hazard
16: __no hazard
17: __no hazard

B) 2 80 0 0 0 0 W 1 P R e

Credit 8:
ID EX MEM

IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

In instruction seven, we are trying to store the value of Ss2
into memory at the location SsO + 0. Neither of these registers
have been modified by our segment of assembly code, so this
instruction can proceed without hazards.

