
CDA 3103: Study Set 6
DATAPATH, CONTROL SIGNALS, PIPELINING

Review: Datapath
The MIPS ISA is called a RISC (reduced instruction set computer). We only developed the
datapath for some of the MIPS instructions we know.

RISC Instruction Set:

R-Types: Add, Subtract, And, Or, Slt

I-Types: Add Immediate, And Immediate, Or Immediate, Load Word, Store Word, Branch if Equal

J-Types: Jump

Review: Datapath
In the single cycle datapath each
instruction is fetched and processed in
one clock cycle.

The Program Counter (PC) is a register
that contains our current address in
instruction memory. This is the location
of our next instruction.

The instruction comes out of memory
on a 32-bit bus. We split the wires of
this bus to several different locations.
The six most significant bits [bits 31-26]
for all instructions types are the opcode,
we send these bits to the control unit.

Review: Datapath
The next five bits [bits 25-21] are sent to
the register file to identify the first
register we will be reading from. We
always do this, even if the instruction
does not need to read any registers.

The same is true for the following five
bits [bits 20-16]. In most of our
instructions (add, sub, and, or, slt, sw,
and beq) we will need the data from
these two registers.

For a lw instruction, these five bits
specify the destination. So we also send
these five bits through a multiplexor to
the write register.

Review: Datapath
The next five bits [bits 15-11] are sent to
the write register multiplexor. In R-Type
instructions, this will be the register that
receives a new value.

The 16 least significant bits [bits 15-0]
are also sent to the sign extension unit
to form a sign-extended immediate
when its needed (addi, lw, sw, and beq).

The 6 least significant bits [bits 5-0] are
also sent to the ALU control. These will
only be used for decoding R-Type
instructions.

Review: Datapath
At this point, we add 4 to the PC to get
set up for the next instruction.

If our current instruction is a branch or a
jump, this value might change a second
time.

In a jump, the 26 least significant bits
[bits 25-0] will be shifted twice to the
left. This is the same as multiplying by 4
and results in a 28 bit jump address.

We then copy over the four most
significant bits from the PC [bits 31-28]
to form a complete new PC.

Review: Datapath
The register file will produce two values
along the read data 1 and read data 2
buses. Read data 1 is always sent to the
Arithmetic Logic Unit (ALU).

The second input to the ALU depends
on the instruction. R-Type instructions
and BEQ use both register values. I-
Type instructions other than BEQ use
only one register and the other input to
the ALU is the immediate value. We use
the multiplexor between the register file
and the ALU to choose between these
two values.

Review: Datapath
The ALU will produce a result based on
the inputs provided and the ALU
operation signal from the ALU control
unit.

For most instructions, we send this
result “around” the data memory and
back to the register file.

For lw and sw, this result is our memory
access address. In a sw, we take the
value from the read data 2 bus and
store into data memory.

Review: Datapath
In a lw instruction, we take a value out
of memory and send it back to the
register. This creates two possible
values for write data. We use a
multiplexor to choose between ALU
result and read data.

Review: Datapath
In a BEQ instruction, we calculate a
branch target address by shifting our
sign-extended immediate to the left
twice. This is the same as multiplying it
by four.

We then add this to the new PC value.
If the two registers we are comparing
actually are equal, then the Zero signal
from the ALU will be asserted.

If both Branch and Zero are true, we
select this branch target address to be
our new Program Counter.

Review: Datapath
All of the decisions to be made on the
datapath are controlled by multiplexors
and control signals (shown in blue).

The Control Unit sets each of these
signals based on the opcode in the
instruction. These signals give the
processor permission to read from data
memory, write to data memory, and
write to the register file. They also
specify when to use read data 2 versus
the sign extended immediate, which
register to write to, when to use
memory data versus the ALU result.
They also determine where the next PC
will come from.

Review: Control Signals
The Control Unit sets all the control
signals based on the Opcode.

RegDst chooses which set of bits will
determine the write register.

If RegDst is 0 (deasserted) we use bits
25-21 to determine the write register.
We want to do this for I-Type
instructions that write to the register
file (addi, andi, ori, and lw).

If RegDst is 1 (asserted) we use bits 15-
11 to determine the write register. We
want to do this for all R-Type
instructions.

Review: Control Signals
Jump determines our next Program
Counter.

We want to assert Jump whenever our
current instruction is a jump. Jump
should be deasserted for all other
instructions.

Branch is also used to determined the
next Program counter.

We want to assert Branch whenever
our current instruction is BEQ. Branch
should be deasserted for all other
instructions.

Review: Control Signals
MemRead gives the processor
permission to read from Data Memory.

We want to assert MemRead whenever
the current instruction is a load word. It
should be desasserted for all other
instructions.

MemWrite gives the processor
permission to write to Data Memory.

We want to assert MemWrite
whenever the current instruction is a
store word. It should be desasserted for
all other instructions.

Review: Control Signals
MemtoReg determines which result we
are going to send back to the register
file.

When MemtoReg is set to 0
(deasserted), the ALU result from the
Arithmetic Logic Unit will be sent to the
write data input of the register file. We
want to do this for all R-Type
instructions and any I-Type instructions
that write to the register file.

When MemtoReg is asserted, the value
from data memory will be sent to the
register file. We want to do this if the
instruction is a load word.

Review: Control Signals
ALUSrc stands for ALU source. This
determines the second input for the
Arithmetic Logic Unit. It has to choose
between read data 2 and the sign-
extended immediate value.

If ALUSrc is set to 0 (deasserted) then
we will choose read data 2. We want to
do this for all R-Types and BEQ.

If ALUSrc is set to 1 (asserted) then we
will choose the sign-extended
immediate value. We want to do this
for the remaining I-Types (addi, andi,
ori, lw, and sw).

Review: Control Signals
RegWrite gives the processor
permission to write to the register file.

We want to assert this control signal
whenever we need to write to the
register file:

◦ All R-Types

◦ Add Immediate

◦ And Immediate

◦ Or Immediate

◦ Load Word

We want to deassert this signal for all
other instructions.

Example: Control Signals
How should the control signals be set
for an addi instruction?

Given:

Example: Control Signals
How should the control signals be set
for an addi instruction?

The first control signal is RegDst. Our
instruction – addi – is an I-Type
instruction with the following format:

This tells us the destination register is
specified by bits 20-16. So we should
set RegDst to 0 to let bits 20-16 specify
the write register.

RegDst = 0.

Given:

Partial
Credit 1:

Solution 1:

op rs rt constant

6 bits 5 bits 5 bits 16 bits

Example: Control Signals
How should the control signals be set
for an addi instruction?

The next control signal is Jump. Since
our instruction – addi – is not a jump
instruction, this signal should be set to
0.

Jump = 0.

Given:

Partial
Credit 2:

Solution 2:

Example: Control Signals
How should the control signals be set
for an addi instruction?

The next control signal is Branch. Since
our instruction – addi – is not a branch
instruction, this signal should be set to
0.

Branch = 0.

Given:

Partial
Credit 3:

Solution 3:

Example: Control Signals
How should the control signals be set
for an addi instruction?

The next control signal is MemRead.
Since our instruction – addi – is not a
load word instruction, this signal should
be set to 0.

MemRead = 0.

Given:

Partial
Credit 4:

Solution 4:

Example: Control Signals
How should the control signals be set
for an addi instruction?

The next control signal is MemtoReg.
Since our instruction – addi – is not a
load word instruction, this signal should
be set to 0.

MemtoReg = 0.

Given:

Partial
Credit 5:

Solution 5:

Example: Control Signals
How should the control signals be set
for an addi instruction?

The next control signal is ALUOp. For
this signal we need to consider what
action the ALU should perform. With
an addi instruction, we expect the ALU
to perform an addition operation.

ALUOp = add.

Given:

Partial
Credit 6:

Solution 6:

Example: Control Signals
How should the control signals be set
for an addi instruction?

The next control signal is MemWrite.
Since our instruction – addi – is not a
store word instruction, this signal
should be set to 0.

MemWrite = 0.

Given:

Partial
Credit 7:

Solution 7:

Example: Control Signals
How should the control signals be set
for an addi instruction?

The next control signal is ALUSrc. Since
our instruction – addi – seeks to add a
register and a constant value together
we should send the sign-extended
immediate as the second input to the
ALU. To do this we need to set ALUSrc
to 1.

ALUSrc = 1.

Given:

Partial
Credit 8:

Solution 8:

Example: Control Signals
How should the control signals be set
for an addi instruction?

The last control signal is RegWrite.
Since our instruction – addi – seeks to
store the result of the add in the
register file, we should assert this
signal. This allows the processor to
write to the register file.

RegWrite = 1.

Given:

Partial
Credit 9:

Solution 9:

Example: Control Signals
How should the control signals be set
for a lw instruction?

Given:

Example: Control Signals
How should the control signals be set
for a lw instruction?

The first control signal is RegDst. Our
instruction – lw – is an I-Type
instruction with the following format:

This tells us the destination register is
specified by bits 20-16. So we should
set RegDst to 0 to let bits 20-16 specify
the write register.

RegDst = 0.

Given:

Partial
Credit 1:

Solution 1:

op rs rt constant

6 bits 5 bits 5 bits 16 bits

Example: Control Signals
How should the control signals be set
for a lw instruction?

The next control signal is Jump. Since
our instruction – lw – is not a jump
instruction, this signal should be set to
0.

Jump = 0.

Given:

Partial
Credit 2:

Solution 2:

Example: Control Signals
How should the control signals be set
for a lw instruction?

The next control signal is Branch. Since
our instruction – lw – is not a branch
instruction, this signal should be set to
0.

Branch = 0.

Given:

Partial
Credit 3:

Solution 3:

Example: Control Signals
How should the control signals be set
for a lw instruction?

The next control signal is MemRead.
Since this is a load word instruction,
this signal should be set to 1.

MemRead = 1.

Given:

Partial
Credit 4:

Solution 4:

Example: Control Signals
How should the control signals be set
for a lw instruction?

The next control signal is MemtoReg.
Since our instruction is a load word
instruction, this signal should be set to
1. This tells the processor to send the
value obtained from memory back to
the register file.

MemtoReg = 1.

Given:

Partial
Credit 5:

Solution 5:

Example: Control Signals
How should the control signals be set
for a lw instruction?

The next control signal is ALUOp. For
this signal we need to consider what
action the ALU should perform. With a
lw instruction, we expect the ALU to
perform an addition operation in order
to add the base address and the offset
together to get our final memory
address.

ALUOp = add.

Given:

Partial
Credit 6:

Solution 6:

Example: Control Signals
How should the control signals be set
for a lw instruction?

The next control signal is MemWrite.
Since our instruction – lw – is not a
store word instruction, this signal
should be set to 0.

MemWrite = 0.

Given:

Partial
Credit 7:

Solution 7:

Example: Control Signals
How should the control signals be set
for a lw instruction?

The next control signal is ALUSrc. Since
our instruction – lw – seeks to add a
register and a constant value together
to form a memory address we should
send the sign-extended immediate as
the second input to the ALU. To do this
we need to set ALUSrc to 1.

ALUSrc = 1.

Given:

Partial
Credit 8:

Solution 8:

Example: Control Signals
How should the control signals be set
for a lw instruction?

The last control signal is RegWrite.
Since our instruction – lw – seeks to
store the value obtained from memory
in the register file, we should assert this
signal. This allows the processor to
write to the register file.

RegWrite = 1.

Given:

Partial
Credit 9:

Solution 9:

Review:
Pipelining
Pipelining allows us to overlap
instructions in execution. When
an instruction finishes the first
stage and moves on to the
second stage, the next
instruction can start the first
stage.

This increases our throughput:
the number of instructions we
can complete in a certain
amount of time.

Review:
Pipelining
A MIPS RISC has 5 stages in the
pipeline:

◦ Instruction Fetch (IF)

◦ Instruction Decode (ID)

◦ Execution (Ex)

◦ Memory Access (Mem)

◦ Write Back (WB)

Review:
Pipelining
A MIPS RISC has 5 stages in the
pipeline:

◦ Instruction Fetch (IF)
◦ During this stage, we fetch the next

instruction located in Instruction
Memory at PC. We send this along to
the pipeline register to wait for the next
stage.

◦ Also in this stage, we update PC by
adding 4 to the current PC value.

◦ Instruction Decode (ID)

◦ Execution (Ex)

◦ Memory Access (Mem)

◦ Write Back (WB)

Review:
Pipelining
A MIPS RISC has 5 stages in the
pipeline:

◦ Instruction Fetch (IF)

◦ Instruction Decode (ID)
◦ In this stage, we send the opcode to the

Control Unit and determine the control
signals for the rest of the datapath.

◦ We also read from the register file in this
stage: setting up read data 1 and read
data 2 for the next stage.

◦ We also send our 16 least significant bits
to the sign-extension unit.

◦ Execution (Ex)

◦ Memory Access (Mem)

◦ Write Back (WB)

Review:
Pipelining
A MIPS RISC has 5 stages in the
pipeline:

◦ Instruction Fetch (IF)

◦ Instruction Decode (ID)

◦ Execution (Ex)
◦ In this stage we do several

computations. The arithmetic logic unit
will perform an action based on the
opcode: add, subtract, and, or, slt.

◦ We also calculate a branch target
address and determine the location for
the ALU result.

◦ Memory Access (Mem)

◦ Write Back (WB)

Review:
Pipelining
A MIPS RISC has 5 stages in the
pipeline:

◦ Instruction Fetch (IF)

◦ Instruction Decode (ID)

◦ Execution (Ex)

◦ Memory Access (Mem)
◦ In this stage we can access the Data

Memory. We will do this if the current
instruction is either a load word or store
word.

◦ We also resolve any branch decisions in
this stage.

◦ Write Back (WB)

Review:
Pipelining
A MIPS RISC has 5 stages in the
pipeline:

◦ Instruction Fetch (IF)

◦ Instruction Decode (ID)

◦ Execution (Ex)

◦ Memory Access (Mem)

◦ Write Back (WB)
◦ In the last stage, we update the register

file, if needed. We need to carry the
write destination register along with the
instruction to each pipeline stage to
make sure we write the result to correct
location.

Review: Hazards
Pipelining introduces Hazards to the datapath. These occur whenever the next instruction
cannot continue as expected. There are three situation where that might happen:

Structure hazard
◦ A required resource is busy

Data hazard
◦ Need to wait for previous instruction to complete its data read/write

Control hazard
◦ Deciding on control action depends on previous instruction

Review: Hazards
Structural Hazards have been dealt with in the MIPS datapath by duplicating several structural
units. We have separate instruction and data memories so that stage 1 and stage 4 do not have
to compete. There are several shifters and adders to manipulate different target addresses, so
that our next Program Counter will be ready when we need it.

Review: Hazards
Data Hazards occur whenever our current instruction has to wait for a previous instruction to
complete. Consider the following example:

add $t0, $s1, $s2

add $s0, $t0, $zero

The second add instruction has $t0 as one of the sources, but the first add instruction has $t0 as
it’s result. The first add instruction will not be writing the result to $t0 until it reaches stage 5
(write back). But the second add instruction would normally be reading when the first
instruction is in stage 3 (execution).

Review: Hazards
Data Hazard:

add $t0, $s1, $s2

add $s0, $t0, $zero

There are a couple ways to address this. The easiest method is to stall the pipeline until the first
instruction has completed enough for the second instruction to begin. The write back stage of
the first instruction can overlap with
the instruction decode stage of the
second instruction.

Review: Hazards
Control Hazards occur whenever we have
a branch instruction. Remember that our
RISC system only supports BEQ.

We won’t know until the end of stage 3
whether or not the two values are actually
equal to each other.

Therefore, we cannot set our next PC until
the BEQ instruction reaches stage 4. We
won’t fetch the next instruction until our
BEQ instruction is in stage 4.

Review: Hazards
Similar to data hazards, the easiest method is to stall until the branch has been resolved.

Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

I0: ___________________________
I1: ___________________________
I2: ___________________________
I3: ___________________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0

I1

I2

I3

I4

I5

I6

I7

Given:

Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

I0: __no hazard_________________
I1: ___________________________
I2: ___________________________
I3: ___________________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1

I2

I3

I4

I5

I6

I7

Given:

Since hazards are situations that prevent an instruction from
running, we assume the first instruction cannot experience a
hazard as there is nothing prior to it.

We show the stages of instruction zero in the chart to track
when $t4 – the destination register – will be updated.

Partial
Credit 1:

Solution 1:

Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

I0: __no hazard_________________
I1: __data hazard________________
I2: ___________________________
I3: ___________________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2

I3

I4

I5

I6

I7

Given:

In instruction one, we are trying to add $t4 and $s2 together.
However, $t4 is being written by the previous instruction –
instruction zero. In the chart we can see that this value does
not reach the register file until T4. Since we write in the first
half of the clock cycle and read in the second, we can overlap
the WB stage of I0 and the ID stage of I1.

Partial
Credit 2:

Solution 2:

Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

I0: __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: ___________________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3

I4

I5

I6

I7

Given:

In instruction two, we are trying to add $t0 and $s0 together.
Neither of these registers have been modified by our segment
of assembly code, so this instruction should be able to
proceed without a hazard.

Partial
Credit 3:

Solution 3:

Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

I0: __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4

I5

I6

I7

Given:

In instruction three, we are trying to add $t0 and $s0 together.
Even though we read these in our previous instruction these
registers have not been modified. So this instruction should be
able to proceed without a hazard.

Partial
Credit 4:

Solution 4:

Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

I0: __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: __data hazard________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4 IF ID EX MEM WB

I5

I6

I7

Given:

In instruction four, we are trying to subtract $s2 from $t1. $t1
was most recently modified by instruction three, which will
not write the value of $t1 to the register file until T9. I4 must
wait until the same clock cycle to read the correct value of $t1.
This is a data hazard.

Partial
Credit 5:

Solution 5:

Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

I0: __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: __data hazard________________
I5: __no hazard_________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4 IF ID EX MEM WB

I5 IF ID EX MEM WB

I6

I7

Given:

In instruction five, we load a value from memory at the
location $t1 + 0 and store the result into $t5. $t1 has had time
to become stable since being written by I3.

Partial
Credit 6:

Solution 6:

Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

I0: __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: __data hazard________________
I5: __no hazard_________________
I6: __no hazard_________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4 IF ID EX MEM WB

I5 IF ID EX MEM WB

I6 IF ID EX MEM WB

I7

Given:

In instruction six, we check to see if $s0 is less than $s1.
Neither of these registers have been modified by our segment
of assembly code, so this instruction can proceed without
hazards.

Partial
Credit 7:

Solution 7:

Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard
should be detected. If so, identify the type of hazard as
structure, data, or control. Assume the instructions are
being processed on a MIPS pipelined datapath without
forwarding.

I0: __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: __data hazard________________
I5: __no hazard_________________
I6: __no hazard_________________
I7: __no hazard_________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4 IF ID EX MEM WB

I5 IF ID EX MEM WB

I6 IF ID EX MEM WB

I7 IF ID EX MEM WB

Given:

In instruction seven, we are trying to store the value of $s2
into memory at the location $s0 + 0. Neither of these registers
have been modified by our segment of assembly code, so this
instruction can proceed without hazards.

Partial
Credit 8:

Solution 8:

