
CDA 3103: Study Set 6
DATAPATH, CONTROL SIGNALS, PIPELINING



Review: Datapath
The MIPS ISA is called a RISC (reduced instruction set computer).  We only developed the 
datapath for some of the MIPS instructions we know.

RISC Instruction Set:

R-Types: Add, Subtract, And, Or, Slt

I-Types: Add Immediate, And Immediate, Or Immediate, Load Word, Store Word, Branch if Equal

J-Types: Jump



Review: Datapath
In the single cycle datapath each 
instruction is fetched and processed in 
one clock cycle.

The Program Counter (PC) is a register 
that contains our current address in 
instruction memory.  This is the location 
of our next instruction. 

The instruction comes out of memory 
on a 32-bit bus.  We split the wires of 
this bus to several different locations.  
The six most significant bits [bits 31-26] 
for all instructions types are the opcode, 
we send these bits to the control unit. 



Review: Datapath
The next five bits [bits 25-21] are sent to 
the register file to identify the first 
register we will be reading from.  We 
always do this, even if the instruction 
does not need to read any registers.

The same is true for the following five 
bits [bits 20-16].  In most of our 
instructions (add, sub, and, or, slt, sw, 
and beq) we will need the data from 
these two registers.  

For a lw instruction, these five bits 
specify the destination.  So we also send 
these five bits through a multiplexor to 
the write register.  



Review: Datapath
The next five bits [bits 15-11] are sent to 
the write register multiplexor.  In R-Type 
instructions, this will be the register that 
receives a new value.

The 16 least significant bits [bits 15-0] 
are also sent to the sign extension unit 
to form a sign-extended immediate 
when its needed (addi, lw, sw, and beq).

The 6 least significant bits [bits 5-0] are 
also sent to the ALU control.  These will 
only be used for decoding R-Type 
instructions.



Review: Datapath
At this point, we add 4 to the PC to get 
set up for the next instruction.

If our current instruction is a branch or a 
jump, this value might change a second 
time.

In a jump, the 26 least significant bits 
[bits 25-0] will be shifted twice to the 
left.  This is the same as multiplying by 4 
and results in a 28 bit jump address.

We then copy over the four most 
significant bits from the PC [bits 31-28] 
to form a complete new PC.



Review: Datapath
The register file will produce two values 
along the read data 1 and read data 2 
buses.  Read data 1 is always sent to the 
Arithmetic Logic Unit (ALU).

The second input to the ALU depends 
on the instruction.  R-Type instructions 
and BEQ use both register values.  I-
Type instructions other than BEQ use 
only one register and the other input to 
the ALU is the immediate value.  We use 
the multiplexor between the register file 
and the ALU to choose between these 
two values.



Review: Datapath
The ALU will produce a result based on 
the inputs provided and the ALU 
operation signal from the ALU control 
unit.

For most instructions, we send this 
result “around” the data memory and 
back to the register file.

For lw and sw, this result is our memory 
access address.  In a sw, we take the 
value from the read data 2 bus and 
store into data memory.



Review: Datapath
In a lw instruction, we take a value out 
of memory and send it back to the 
register.  This creates two possible 
values for write data.  We use a 
multiplexor to choose between ALU 
result and read data.  



Review: Datapath
In a BEQ instruction, we calculate a 
branch target address by shifting our 
sign-extended immediate to the left 
twice.  This is the same as multiplying it 
by four.

We then add this to the new PC value.  
If the two registers we are comparing 
actually are equal, then the Zero signal 
from the ALU will be asserted.  

If both Branch and Zero are true, we 
select this branch target address to be 
our new Program Counter.



Review: Datapath
All of the decisions to be made on the 
datapath are controlled by multiplexors 
and control signals (shown in blue).  

The Control Unit sets each of these 
signals based on the opcode in the 
instruction.  These signals give the 
processor permission to read from data 
memory, write to data memory, and 
write to the register file. They also 
specify when to use read data 2 versus 
the sign extended immediate, which 
register to write to, when to use 
memory data versus the ALU result.  
They also determine where the next PC 
will come from.



Review: Control Signals
The Control Unit sets all the control 
signals based on the Opcode.  

RegDst chooses which set of bits will 
determine the write register.  

If RegDst is 0 (deasserted) we use bits 
25-21 to determine the write register.  
We want to do this for I-Type 
instructions that write to the register 
file (addi, andi, ori, and lw).

If RegDst is 1 (asserted) we use bits 15-
11 to determine the write register.  We 
want to do this for all R-Type 
instructions.



Review: Control Signals
Jump determines our next Program 
Counter.

We want to assert Jump whenever our 
current instruction is a jump. Jump 
should be deasserted for all other 
instructions.

Branch is also used to determined the 
next Program counter.

We want to assert Branch whenever 
our current instruction is BEQ. Branch 
should be deasserted for all other 
instructions.



Review: Control Signals
MemRead gives the processor 
permission to read from Data Memory.

We want to assert MemRead whenever 
the current instruction is a load word. It 
should be desasserted for all other 
instructions.

MemWrite gives the processor 
permission to write to Data Memory.

We want to assert MemWrite
whenever the current instruction is a 
store word. It should be desasserted for 
all other instructions.



Review: Control Signals
MemtoReg determines which result we 
are going to send back to the register 
file.  

When MemtoReg is set to 0 
(deasserted), the ALU result from the 
Arithmetic Logic Unit will be sent to the 
write data input of the register file.  We 
want to do this for all R-Type 
instructions and any I-Type instructions 
that write to the register file.

When MemtoReg is asserted, the value 
from data memory will be sent to the 
register file.  We want to do this if the 
instruction is a load word.



Review: Control Signals
ALUSrc stands for ALU source.  This 
determines the second input for the 
Arithmetic Logic Unit.  It has to choose 
between read data 2 and the sign-
extended immediate value.

If ALUSrc is set to 0 (deasserted) then 
we will choose read data 2.  We want to 
do this for all R-Types and BEQ.

If ALUSrc is set to 1 (asserted) then we 
will choose the sign-extended 
immediate value.  We want to do this 
for the remaining I-Types (addi, andi, 
ori, lw, and sw).



Review: Control Signals
RegWrite gives the processor 
permission to write to the register file.

We want to assert this control signal 
whenever we need to write to the 
register file:

◦ All R-Types

◦ Add Immediate

◦ And Immediate

◦ Or Immediate

◦ Load Word

We want to deassert this signal for all 
other instructions.



Example: Control Signals
How should the control signals be set 
for an addi instruction?

Given:



Example: Control Signals
How should the control signals be set 
for an addi instruction?

The first control signal is RegDst.  Our 
instruction – addi – is an I-Type 
instruction with the following format:

This tells us the destination register is 
specified by bits 20-16.  So we should 
set RegDst to 0 to let bits 20-16 specify 
the write register.

RegDst = 0.

Given:

Partial 
Credit 1:

Solution 1:

op rs rt constant

6 bits 5 bits 5 bits 16 bits



Example: Control Signals
How should the control signals be set 
for an addi instruction?

The next control signal is Jump. Since 
our instruction – addi – is not a jump 
instruction, this signal should be set to 
0. 

Jump = 0.

Given:

Partial 
Credit 2:

Solution 2:



Example: Control Signals
How should the control signals be set 
for an addi instruction?

The next control signal is Branch. Since 
our instruction – addi – is not a branch 
instruction, this signal should be set to 
0. 

Branch = 0.

Given:

Partial 
Credit 3:

Solution 3:



Example: Control Signals
How should the control signals be set 
for an addi instruction?

The next control signal is MemRead. 
Since our instruction – addi – is not a 
load word instruction, this signal should 
be set to 0. 

MemRead = 0.

Given:

Partial 
Credit 4:

Solution 4:



Example: Control Signals
How should the control signals be set 
for an addi instruction?

The next control signal is MemtoReg. 
Since our instruction – addi – is not a 
load word instruction, this signal should 
be set to 0. 

MemtoReg = 0.

Given:

Partial 
Credit 5:

Solution 5:



Example: Control Signals
How should the control signals be set 
for an addi instruction?

The next control signal is ALUOp. For 
this signal we need to consider what 
action the ALU should perform.  With 
an addi instruction, we expect the ALU 
to perform an addition operation. 

ALUOp = add.

Given:

Partial 
Credit 6:

Solution 6:



Example: Control Signals
How should the control signals be set 
for an addi instruction?

The next control signal is MemWrite. 
Since our instruction – addi – is not a 
store word instruction, this signal 
should be set to 0. 

MemWrite = 0.

Given:

Partial 
Credit 7:

Solution 7:



Example: Control Signals
How should the control signals be set 
for an addi instruction?

The next control signal is ALUSrc. Since 
our instruction – addi – seeks to add a 
register and a constant value together 
we should send the sign-extended 
immediate as the second input to the 
ALU.  To do this we need to set ALUSrc
to 1.

ALUSrc = 1.

Given:

Partial 
Credit 8:

Solution 8:



Example: Control Signals
How should the control signals be set 
for an addi instruction?

The last control signal is RegWrite. 
Since our instruction – addi – seeks to 
store the result of the add in the 
register file, we should assert this 
signal.  This allows the processor to 
write to the register file.

RegWrite = 1.

Given:

Partial 
Credit 9:

Solution 9:



Example: Control Signals
How should the control signals be set 
for a lw instruction?

Given:



Example: Control Signals
How should the control signals be set 
for a lw instruction?

The first control signal is RegDst.  Our 
instruction – lw – is an I-Type 
instruction with the following format:

This tells us the destination register is 
specified by bits 20-16.  So we should 
set RegDst to 0 to let bits 20-16 specify 
the write register.

RegDst = 0.

Given:

Partial 
Credit 1:

Solution 1:

op rs rt constant

6 bits 5 bits 5 bits 16 bits



Example: Control Signals
How should the control signals be set 
for a lw instruction?

The next control signal is Jump. Since 
our instruction – lw – is not a jump 
instruction, this signal should be set to 
0. 

Jump = 0.

Given:

Partial 
Credit 2:

Solution 2:



Example: Control Signals
How should the control signals be set 
for a lw instruction?

The next control signal is Branch. Since 
our instruction – lw – is not a branch 
instruction, this signal should be set to 
0. 

Branch = 0.

Given:

Partial 
Credit 3:

Solution 3:



Example: Control Signals
How should the control signals be set 
for a lw instruction?

The next control signal is MemRead. 
Since this is a load word instruction, 
this signal should be set to 1. 

MemRead = 1.

Given:

Partial 
Credit 4:

Solution 4:



Example: Control Signals
How should the control signals be set 
for a lw instruction?

The next control signal is MemtoReg. 
Since our instruction is a load word 
instruction, this signal should be set to 
1. This tells the processor to send the 
value obtained from memory back to 
the register file.

MemtoReg = 1.

Given:

Partial 
Credit 5:

Solution 5:



Example: Control Signals
How should the control signals be set 
for a lw instruction?

The next control signal is ALUOp. For 
this signal we need to consider what 
action the ALU should perform.  With a 
lw instruction, we expect the ALU to 
perform an addition operation in order 
to add the base address and the offset 
together to get our final memory 
address.

ALUOp = add.

Given:

Partial 
Credit 6:

Solution 6:



Example: Control Signals
How should the control signals be set 
for a lw instruction?

The next control signal is MemWrite. 
Since our instruction – lw – is not a 
store word instruction, this signal 
should be set to 0. 

MemWrite = 0.

Given:

Partial 
Credit 7:

Solution 7:



Example: Control Signals
How should the control signals be set 
for a lw instruction?

The next control signal is ALUSrc. Since 
our instruction – lw – seeks to add a 
register and a constant value together 
to form a memory address we should 
send the sign-extended immediate as 
the second input to the ALU.  To do this 
we need to set ALUSrc to 1.

ALUSrc = 1.

Given:

Partial 
Credit 8:

Solution 8:



Example: Control Signals
How should the control signals be set 
for a lw instruction?

The last control signal is RegWrite. 
Since our instruction – lw – seeks to 
store the value obtained from memory 
in the register file, we should assert this 
signal.  This allows the processor to 
write to the register file.

RegWrite = 1.

Given:

Partial 
Credit 9:

Solution 9:



Review: 
Pipelining
Pipelining allows us to overlap 
instructions in execution.  When 
an instruction finishes the first 
stage and moves on to the 
second stage, the next 
instruction can start the first 
stage.

This increases our throughput: 
the number of instructions we 
can complete in a certain 
amount of time. 



Review: 
Pipelining
A MIPS RISC has 5 stages in the 
pipeline:

◦ Instruction Fetch (IF)

◦ Instruction Decode (ID)

◦ Execution (Ex)

◦ Memory Access (Mem)

◦ Write Back (WB)



Review: 
Pipelining
A MIPS RISC has 5 stages in the 
pipeline:

◦ Instruction Fetch (IF)
◦ During this stage, we fetch the next 

instruction located in Instruction 
Memory at PC.  We send this along to 
the pipeline register to wait for the next 
stage.

◦ Also in this stage, we update PC by 
adding 4 to the current PC value.  

◦ Instruction Decode (ID)

◦ Execution (Ex)

◦ Memory Access (Mem)

◦ Write Back (WB)



Review: 
Pipelining
A MIPS RISC has 5 stages in the 
pipeline:

◦ Instruction Fetch (IF) 

◦ Instruction Decode (ID)
◦ In this stage, we send the opcode to the 

Control Unit and determine the control 
signals for the rest of the datapath.

◦ We also read from the register file in this 
stage: setting up read data 1 and read 
data 2 for the next stage.

◦ We also send our 16 least significant bits 
to the sign-extension unit.

◦ Execution (Ex)

◦ Memory Access (Mem)

◦ Write Back (WB)



Review: 
Pipelining
A MIPS RISC has 5 stages in the 
pipeline:

◦ Instruction Fetch (IF) 

◦ Instruction Decode (ID)

◦ Execution (Ex)
◦ In this stage we do several 

computations.  The arithmetic logic unit 
will perform an action based on the 
opcode: add, subtract, and, or, slt.

◦ We also calculate a branch target 
address and determine the location for 
the ALU result.

◦ Memory Access (Mem)

◦ Write Back (WB)



Review: 
Pipelining
A MIPS RISC has 5 stages in the 
pipeline:

◦ Instruction Fetch (IF) 

◦ Instruction Decode (ID)

◦ Execution (Ex)

◦ Memory Access (Mem)
◦ In this stage we can access the Data 

Memory.  We will do this if the current 
instruction is either a load word or store 
word.

◦ We also resolve any branch decisions in 
this stage.

◦ Write Back (WB)



Review: 
Pipelining
A MIPS RISC has 5 stages in the 
pipeline:

◦ Instruction Fetch (IF) 

◦ Instruction Decode (ID)

◦ Execution (Ex)

◦ Memory Access (Mem)

◦ Write Back (WB)
◦ In the last stage, we update the register 

file, if needed.  We need to carry the 
write destination register along with the 
instruction to each pipeline stage to 
make sure we write the result to correct 
location.



Review: Hazards
Pipelining introduces Hazards to the datapath.  These occur whenever the next instruction 
cannot continue as expected.  There are three situation where that might happen:

Structure hazard
◦ A required resource is busy

Data hazard
◦ Need to wait for previous instruction to complete its data read/write

Control hazard
◦ Deciding on control action depends on previous instruction



Review: Hazards
Structural Hazards have been dealt with in the MIPS datapath by duplicating several structural 
units.  We have separate instruction and data memories so that stage 1 and stage 4 do not have 
to compete.  There are several shifters and adders to manipulate different target addresses, so 
that our next Program Counter will be ready when we need it.



Review: Hazards
Data Hazards occur whenever our current instruction has to wait for a previous instruction to 
complete.  Consider the following example:

add $t0, $s1, $s2

add $s0, $t0, $zero

The second add instruction has $t0 as one of the sources, but the first add instruction has $t0 as 
it’s result.  The first add instruction will not be writing the result to $t0 until it reaches stage 5 
(write back).  But the second add instruction would normally be reading when the first 
instruction is in stage 3 (execution).



Review: Hazards
Data Hazard:

add $t0, $s1, $s2

add $s0, $t0, $zero

There are a couple ways to address this.  The easiest method is to stall the pipeline until the first 
instruction has completed enough for the second instruction to begin.  The write back stage of 
the first instruction can overlap with 
the instruction decode stage of the 
second instruction.



Review: Hazards
Control Hazards occur whenever we have 
a branch instruction.  Remember that our 
RISC system only supports BEQ.

We won’t know until the end of stage 3 
whether or not the two values are actually 
equal to each other.  

Therefore, we cannot set our next PC until 
the BEQ instruction reaches stage 4.  We 
won’t fetch the next instruction until our 
BEQ instruction is in stage 4.



Review: Hazards
Similar to data hazards, the easiest method is to stall until the branch has been resolved.



Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard 
should be detected.  If so, identify the type of hazard as 
structure, data, or control.  Assume the instructions are 
being processed on a MIPS pipelined datapath without 
forwarding.

I0:     ___________________________
I1: ___________________________
I2: ___________________________
I3: ___________________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0

I1

I2

I3

I4

I5

I6

I7

Given:



Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard 
should be detected.  If so, identify the type of hazard as 
structure, data, or control.  Assume the instructions are 
being processed on a MIPS pipelined datapath without 
forwarding.

I0:     __no hazard_________________
I1: ___________________________
I2: ___________________________
I3: ___________________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1

I2

I3

I4

I5

I6

I7

Given:

Since hazards are situations that prevent an instruction from 
running, we assume the first instruction cannot experience a 
hazard as there is nothing prior to it.

We show the stages of instruction zero in the chart to track 
when $t4 – the destination register – will be updated.

Partial 
Credit 1:

Solution 1:



Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard 
should be detected.  If so, identify the type of hazard as 
structure, data, or control.  Assume the instructions are 
being processed on a MIPS pipelined datapath without 
forwarding.

I0:     __no hazard_________________
I1: __data hazard________________
I2: ___________________________
I3: ___________________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2

I3

I4

I5

I6

I7

Given:

In instruction one, we are trying to add $t4 and $s2 together.  
However, $t4 is being written by the previous instruction –
instruction zero.  In the chart we can see that this value does 
not reach the register file until T4.  Since we write in the first 
half of the clock cycle and read in the second, we can overlap 
the WB stage of I0 and the ID stage of I1.

Partial 
Credit 2:

Solution 2:



Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard 
should be detected.  If so, identify the type of hazard as 
structure, data, or control.  Assume the instructions are 
being processed on a MIPS pipelined datapath without 
forwarding.

I0:     __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: ___________________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3

I4

I5

I6

I7

Given:

In instruction two, we are trying to add $t0 and $s0 together.  
Neither of these registers have been modified by our segment 
of assembly code, so this instruction should be able to 
proceed without a hazard.

Partial 
Credit 3:

Solution 3:



Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard 
should be detected.  If so, identify the type of hazard as 
structure, data, or control.  Assume the instructions are 
being processed on a MIPS pipelined datapath without 
forwarding.

I0:     __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: ___________________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4

I5

I6

I7

Given:

In instruction three, we are trying to add $t0 and $s0 together.  
Even though we read these in our previous instruction these 
registers have not been modified. So this instruction should be 
able to proceed without a hazard.

Partial 
Credit 4:

Solution 4:



Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard 
should be detected.  If so, identify the type of hazard as 
structure, data, or control.  Assume the instructions are 
being processed on a MIPS pipelined datapath without 
forwarding.

I0:     __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: __data hazard________________
I5: ___________________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4 IF ID EX MEM WB

I5

I6

I7

Given:

In instruction four, we are trying to subtract $s2 from $t1.  $t1 
was most recently modified by instruction three, which will 
not write the value of $t1 to the register file until T9.  I4 must 
wait until the same clock cycle to read the correct value of $t1.  
This is a data hazard.

Partial 
Credit 5:

Solution 5:



Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard 
should be detected.  If so, identify the type of hazard as 
structure, data, or control.  Assume the instructions are 
being processed on a MIPS pipelined datapath without 
forwarding.

I0:     __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: __data hazard________________
I5: __no hazard_________________
I6: ___________________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4 IF ID EX MEM WB

I5 IF ID EX MEM WB

I6

I7

Given:

In instruction five, we load a value from memory at the 
location $t1 + 0 and store the result into $t5.  $t1 has had time 
to become stable since being written by I3.

Partial 
Credit 6:

Solution 6:



Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard 
should be detected.  If so, identify the type of hazard as 
structure, data, or control.  Assume the instructions are 
being processed on a MIPS pipelined datapath without 
forwarding.

I0:     __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: __data hazard________________
I5: __no hazard_________________
I6: __no hazard_________________
I7: ___________________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4 IF ID EX MEM WB

I5 IF ID EX MEM WB

I6 IF ID EX MEM WB

I7

Given:

In instruction six, we check to see if $s0 is less than $s1.  
Neither of these registers have been modified by our segment 
of assembly code, so this instruction can proceed without 
hazards.

Partial 
Credit 7:

Solution 7:



Example: Hazards
Consider the following assembly language code:

I0: sub $t4, $t1, $s2
I1: add $s3, $s2, $t4
I2: add $t1, $t0, $s0
I3: add $t1, $t0, $s0
I4: sub $t4, $t1, $s2
I5: lw $t5, 0($t1)
I6: slt $t0, $s0, $s1
I7: sw $s2, 0($s0)

For each instruction, identify whether or not a hazard 
should be detected.  If so, identify the type of hazard as 
structure, data, or control.  Assume the instructions are 
being processed on a MIPS pipelined datapath without 
forwarding.

I0:     __no hazard_________________
I1: __data hazard________________
I2: __no hazard_________________
I3: __no hazard_________________
I4: __data hazard________________
I5: __no hazard_________________
I6: __no hazard_________________
I7: __no hazard_________________

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

I0 IF ID EX MEM WB

I1 IF ID EX MEM WB

I2 IF ID EX MEM WB

I3 IF ID EX MEM WB

I4 IF ID EX MEM WB

I5 IF ID EX MEM WB

I6 IF ID EX MEM WB

I7 IF ID EX MEM WB

Given:

In instruction seven, we are trying to store the value of $s2 
into memory at the location $s0 + 0. Neither of these registers 
have been modified by our segment of assembly code, so this 
instruction can proceed without hazards.

Partial 
Credit 8:

Solution 8:


