
SEQUENTIAL LOGIC

DESIGN

Introduction

• Combinational Circuits
• Without memory

• Outputs depend only on current inputs

• Output determined after sufficient time has elapsed

• Sequential Circuits
• Have memory

• Outputs depend on inputs and previous outputs

• Previous output stored even after waiting

"remember"

"load"
"data"

"stored value"

"0"

"1"

"stored value"

Simple Sequential Circuits

• Two inverters form a static memory cell

• The previous output is stored by passing it back into the system

• Will hold value as long as it has power applied

• How to get a new value into the memory cell?

• Selectively break feedback path

• Load new value into cell

Sequential Circuits

• Latches

• Flip-flops

• Registers

Latches

• A latch is a memory element in which the output is equal

to the value of the stored state inside the element and the

state is changed whenever the appropriate inputs change.

Set-Reset Latch

• Built from cross-coupled NOR gates

• Ability to force output to 0 (reset=1) or 1 (set=1)

R

S

Q

Q'

State Machines

• A sequential circuit is described as a finite-state machine

• A set of states

• A function to determine the next state

• A function to determine the output

• Functions can still be represented by a truth table

Behavior of the S-R Latch

• States: {hold, set, reset, unstable}

• Next-State function:

S R State

0 0 hold

0 1 0

1 0 1

1 1 unstable

Behavior of the S-R Latch

• States: {hold, set, reset, unstable}

• Output function:

S R Qin Qout

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 ?

1 1 1 ?

Behavior of the S-R Latch

• State Diagram

• States: possible outputs

• Transitions: events that
cause the system to
change states (inputs)

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

Q Q'
1 1

SR=00SR=00

SR=10

SR=01

SR=00
SR=10

SR=00
SR=01

SR=11 SR=11

SR=10SR=01

SR=01 SR=10

SR=11

possible oscillation
between states 00 and 11

Behavior of the S-R Latch

• Very difficult to observe R-S latch in the unstable state
• One of R or S usually changes first

• Ambiguously returns to state 0-1 or 1-0
• A so-called "race condition"

• Or non-deterministic transition

SR=00SR=00

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

SR=10

SR=01

SR=00
SR=10

SR=00
SR=01

SR=11 SR=11

SR=01 SR=10

SR=11

Unclocked S-R Latch

• In an unclocked circuit the outputs change whenever the

inputs change.

R

S

Q

Q'

Clocks

• Clocks are regular periodic signals

• Clock period is divided into two portions

• When the clock is “high”, also called the duty cycle

• When the clock is “low”

• State changes occur on a clock edge

• When the clock moves from low to high or from high to low

Edge-Triggered Methodology

• Either the rising edge or the falling edge is active

• Determined by implementation

• Does not affect design

• Elements change on the active clock edge

• All inputs sampled at the same time

• All inputs must be valid (steady) at the active clock edge

• Clocked systems are also called synchronous systems.

Sequential Logic Design

• Combinational logic elements are still used

• State elements provide valid inputs to the combinational

logic block.

• Clock period must be long enough to allow all the signals

in the combinational logic block to settle

Steady-State Abstraction

• All real circuits need time to update

• The outputs do not change instantaneously after an input change

• A fundamental abstraction of digital design is to reason

about steady-state behaviors

• Look at outputs only after sufficient time has elapsed for the system

to make its required changes and settle down

• Memory of a system is represented as its state

• Changes in system state are only allowed to occur at specific times

Clocked S-R Latch

• In a clocked circuit, we control when the inputs are

sampled.

clock'

S'
Q'

Q
R' R

S

clock

R' and S'

changing stable changing stablestable

Clocked S-R Latch

• Controlling an R-S latch with a clock

• Can't let R and S change while clock is active

• Only have half of clock period for signal changes to propagate

• Signals must be stable for the other half of clock period

clock'

S'
Q'

Q
R' R

S

Flip-Flops

• A flip-flop is a memory element for which the output is

equal to the value of the stored state inside the element

and for which the internal state is changed only on a clock

edge.

• Often built from clocked latches

D Flip-Flop

• 2 Inputs

• D, the data to be stored

• C, the clock signal

• 2 Outputs

• Q, the internal state

• Q’, the complement of Q

D Flip-Flop

• When the clock is asserted, the flip-flop is “open”

• If D is 1, the S-R latch is “set”

• If D is 0, the S-R latch is “reset”

• When the clock is deasserted, the flip-flop is “closed”

• The S-R latch is “holding”

D Flip-Flop

• Flip-Flops can be built to trigger on either the rising or

falling clock edge

• Remember this does not affect the design

• Flip-Flops can be build to trigger on the offset edge

• If all Flip-Flops trigger on the positive edge, we can build one to

trigger on the negative edge

• We use cascading logic blocks

clock

R

S Q

Q' R

S Q

Q'R

S

Cascading Logic Circuits

• Connect output of one latch to input of another

• How to stop changes from racing through chain?

• Need to control flow of data from one latch to the next

• Advance from one latch per clock period

• Must respect setup and hold time constraints to successfully

capture input

Timing Methodologies

• The set up time is the minimum time that the input must

be valid before the clock edge.

• The hold time is the minimum time during which it must be

valid after the clock edge.

Timing Methodologies

• Rules for interconnecting components and clocks

• Guarantee proper operation of system when strictly followed

• Approach depends on building blocks used for memory

elements

• Focus on systems with edge-triggered flip-flops

• Basic rules for correct timing:

• (1) Correct inputs, with respect to time, are provided to the flip-flops

• (2) No flip-flop changes state more than once per clocking event

all measurements are made from the clocking event:

the rising edge of the clock

Typical Timing Specifications

• Positive edge-triggered D flip-flop
• Setup and hold times

• Minimum clock width

• Propagation delays (low to high, high to low, max and typical)

Th
5ns

Tw 25ns

Tplh
25ns
13ns

Tphl
40ns
25ns

Tsu
20ns

D

CLK

Q

Tsu
20ns

Th
5ns

IN

Q0

Q1

CLK

100

Cascading Edge-triggered Flip-Flops

• Consider setup/hold/propagation delays

• prop must be > hold

CLK

IN
Q0 Q1

D Q D Q OUT

Clock Skew

• Correct behavior assumes next state of all storage elements

determined by all storage elements at the same time

• This is difficult in high-performance systems because time for

clock to arrive at flip-flop is comparable to delays through logic

• Clock skew is the difference in time between when two state

elements see a clock edge

original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1

CLK1 is a delayed
version of CLK0

In

Q0

Q1

CLK0

CLK1

100

Clock Skew

• If the clock skew is large enough, it may be possible for a state

element to change and cause the input to another flip-flop to

change before the clock edge is seen by the second flip-flop.

• To avoid incorrect operation, we must increase the clock period to allow for

the maximum clock skew.

Asynchronous Inputs

• Clocked synchronous circuits
• Inputs, state, and outputs sampled or changed in relation to a

common reference signal (called the clock)

• Asynchronous circuits
• Inputs, state, and outputs sampled or changed independently of a

common reference signal

• Some system inputs must be asynchronous

• reset signal, memory wait, user input

• Unstable states are a major concern

• Asynchronous inputs to synchronous circuits
• Because synchronous inputs are greatly preferred, we use a

synchronizer

Synchronizer

• Use a synchronizer to translate asynchronous input

Synchronizer

• What happens if the asynchronous input is transitioning

between 0 and 1?

• The signal is not stable for the required setup and hold times

• The synchronizer may enter a metastable state

• The output will be neither 0 or 1

• This situation is called synchronizer failure

D DQ Q
asynchronous

input
synchronized

input

synchronous system

Clk

Synchronization Failure

• Probability of failure can never be reduced to 0, but it can be reduced:

• slow down the system clock: this gives the synchronizer more time to

decay into a steady state; synchronizer failure becomes a big problem for

very high speed systems

• Narrow the “unknown” range of values: this makes for a very sharp "peak"

upon which to balance

• cascade two synchronizers: this effectively synchronizes twice (in

subsequent clock cycles)

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input D Q

Clocked
Synchronous

System

Synchronizer

Handling Asynchronous Inputs

• Never allow asynchronous inputs to fan-out to more than

one flip-flop
• Synchronize as soon as possible and then treat as synchronous signal

Sequential Hardware Elements

• Collections of flip-flops with similar controls and logic

• Values in individual flip-flops are related

• Shared clock signal

• Similar logic at each stage

• Examples

• Pattern Recognizer

• Counter

• Shift register

• Data Register

• Register File

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

OUT

Pattern Recognizer

• Combinational function of input samples

• In this case, recognizing the pattern 1001 on the single input signal

• Sequences through a fixed set of patterns

• In this case, 1000, 0100, 0010, 0001

• If one of the patterns is its initial state (by loading or set/reset)

• Mobius (or Johnson) counter

• In this case, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Counters

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Shift Register

• Holds samples of input

• Store last 4 input values in sequence

• 4-bit shift register:

clear sets the register contents
and output to 0

s1 and s0 determine the shift function

s0 s1 function
0 0 hold state
0 1 shift right
1 0 shift left
1 1 load new input

left_in
left_out

right_out

clear
right_in

output

input

s0
s1

clock

Universal Shift Register

• Holds 4 values

• Serial or parallel inputs

• Serial or parallel outputs

• Permits shift left or right

• Shift in new values from left or right

Nth cell

s0 and s1
control mux

0 1 2 3

D

Q

CLK

CLEAR

Q[N-1]
(left)

Q[N+1]
(right)

Input[N]

to N-1th
cell

to N+1th
cell

clear s0 s1 new value

1 – – 0
0 0 0 output
0 0 1 output value of FF to left (shift right)
0 1 0 output value of FF to right (shift left)
0 1 1 input

Design of Universal Shift Register

• Consider one of the four flip-flops

• New value at next clock cycle:

Data Register

• Capable of holding a single binary value

• Loads a new value when write is enabled

• 4-bit Data Register

Register Files

• A register file consists of a set of registers that can be

read and written by supplying a register number to be

accessed.

Register Files: Read

Register Files: Write

