
CDA 3103: Study Set 4
ARITHMETIC LOGIC UNIT, ARITHMETIC FOR BINARY INTEGERS, 
REPRESENTING REAL NUMBERS, ARITHMETIC FOR REAL NUMBERS



Review: Binary Addition
Binary number can be added the same way decimal numbers are added.  We begin with the 
least significant bits and add them.  0 and 1 can be placed in the correct position of the answer.  
Higher results like 2 and 3 (10 and 11 respectively) must be split up.  The least significant bit is 
placed in the answer and the most significant bit is carried over.

3 + 2 = 5

0 0 1 1

+ 0 0 1 0 

0 1 0 1



Example: Binary Addition
Add the binary values 0101 and 0001 together using binary addition.

Stack both binary values, aligning the least significant bits to the right. Either value can be placed 
on top, as this does not affect our algorithm or efficiency.

0 1 0 1

+ 0 0 0 1 

Given:

Partial 
Credit 1:

Solution 1:



Example: Binary Addition
Add the binary values 0101 and 0001 together using binary addition.

Begin by adding the least significant bits: those in the “one’s” position.  Both of these are 1, so 
when we add them together we will get 10.  The less significant bit, 0, will go into the answer.  
The more significant bit, 1, will be carried to the “two’s” position. 

1

0 1 0 1

+ 0 0 0 1 

0

Given:

Partial 
Credit 2:

Solution 2:



Example: Binary Addition
Add the binary values 0101 and 0001 together using binary addition.

Repeat the process for the “two’s” position.  Adding 1+0+0 will result in 1.  You can also think of 
this as 01.  The 1 goes into the answer and 0 is carried to the next column.

0 1

0 1 0 1

+ 0 0 0 1 

1 0

Given:

Partial 
Credit 3:

Solution 3:



Example: Binary Addition
Add the binary values 0101 and 0001 together using binary addition.

Repeat the process for the “four’s” position.  Adding 0+1+0 will result in 1.  You can also think of 
this as 01.  The 1 goes into the answer and 0 is carried to the next column.

0 0 1

0 1 0 1

+ 0 0 0 1 

1 1 0

Given:

Partial 
Credit 4:

Solution 4:



Example: Binary Addition
Add the binary values 0101 and 0001 together using binary addition.

Repeat the process for the “eight’s” position.  In 2’s complement binary you can also thing of this 
as the “negative eight’s” position.  Adding 0+0+0 will result in 0.  You can also think of this as 00.  
A 0 goes into the answer and 0 is carried to the next column.

0 0 0 1

0 1 0 1

+ 0 0 0 1 

0 1 1 0

Given:

Partial 
Credit 5:

Solution 5:



Review: Overflow
Overflow occurs when the result of an arithmetic operation is too large or too small to 
represent.
◦ In our 4-bit examples, that would occur if the result is less than -8 or greater than 7.
◦ Consider what would happen if we had 8 bits.  We could express values up to 127 and down to -128.  
◦ For any collection of N bits, 2’s complement binary can represent positive values up to 2N-1 -1 and 

negative values down to -2N-1.

One way to detect overflow is to compare the carry-in to the carry-out of the most significant 
bit.  If they are the same – either both are 0 or both are 1 – then there is no overflow.  If they are 
different then there is overflow. 



Example: Binary Overflow
Add the binary values 0101 and 0001 together using binary addition. Determine whether or not 
overflow has occurred. 

Use the same process as from binary addition.  Compare the carry-in and the carry-out of the 
most significant bit.  In this case they are both 0.  This tells us no overflow has occurred.

0 0 0 1

0 1 0 1

+ 0 0 0 1 

0 1 1 0

Given:

Partial 
Credit 1:

Solution 1:



Review: Binary Subtraction
2’s complement binary numbers are subtracted by adding their negative equivalent.  A – B 
becomes A + -B.  No changes are made to A.  B must be converted to a negative number: we 
invert each bit of B and then add 1 to the result.  



Example: Binary Subtraction
Suppose A = 0101 and B = 0001. Calculate A-B and state whether or not overflow has occurred.

Calculate -B in order to calculate A + -B.  Perform a bitwise inverse on B and then add 1.

1 1 1 0

+ 0 0 0 1 

1 1 1 1

Given:

Partial 
Credit 1:

Solution 1:



Example: Binary Subtraction
Suppose A = 0101 and B = 0001. Calculate A-B and state whether or not overflow has occurred.

Now, add A and –B.  Start with the least significant bit; the bits in the “one’s” position.

1

0 1 0 1

+ 1 1 1 1 

0

Given:

Partial 
Credit 2:

Solution 2:



Example: Binary Subtraction
Suppose A = 0101 and B = 0001. Calculate A-B and state whether or not overflow has occurred.

Repeat with the “two’s” position.

1 1

0 1 0 1

+ 1 1 1 1 

0 0

Given:

Partial 
Credit 3:

Solution 3:



Example: Binary Subtraction
Suppose A = 0101 and B = 0001. Calculate A-B and state whether or not overflow has occurred.

Repeat with the “four’s” position.

1 1 1

0 1 0 1

+ 1 1 1 1 

1 0 0

Given:

Partial 
Credit 4:

Solution 4:



Example: Binary Subtraction
Suppose A = 0101 and B = 0001. Calculate A-B and state whether or not overflow has occurred.

Repeat with the “eight’s” position.

1 1 1 1

0 1 0 1

+ 1 1 1 1 

0 1 0 0

Given:

Partial 
Credit 5:

Solution 5:



Example: Binary Subtraction
Suppose A = 0101 and B = 0001. Calculate A-B and state whether or not overflow has occurred.

To check for overflow compare the carry-in and the carry-out of the most significant bit.  Since 
they are both 1 we determine that no overflow has occurred.

1 1 1 1

0 1 0 1

+ 1 1 1 1 

0 1 0 0

Given:

Partial 
Credit 6:

Solution 6:



Review: Ripple-Carry Adder
The Ripple-Carry Adder is a piece of hardware that can add or subtract two numbers that are 
represented using 2’s complement representation of binary values. It can also detect overflow.

A B
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Review: Ripple-Carry Adder
We have to send a signal to the Ripple-Carry Adder to tell it which action to perform: either 
addition or subtraction.  Addition will select A and B to be added and the initial carry-in will be 
0.

A B
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Review: Ripple-Carry Adder
A subtraction signal will select the inverse of B.  Each bit of B is inverted.  B and B’ are sent to a 
2:1 multiplexor that will choose between them.  The subtraction signal also sets the initial carry-
in to 1.  This accomplishes both steps of calculating –B: the bitwise inverse and adding 1.
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Review: Arithmetic Logic Unit
The Arithmetic Logic Unit (ALU) is the brawn of the computer
◦ Performs arithmetic operations (addition, subtraction)
◦ Performs logical operations (AND, OR, NOR)
◦ Performs logical comparisons (Less Than, Equal To)

The ALU takes part in all multiplication and division algorithms as well

Inputs to the Arithmetic Logic Unit (ALU)
◦ 2 binary values (signed 
◦ Performs logical operations (AND, OR, NOR)
◦ Performs logical comparisons (Less Than, Equal To)



Review: Arithmetic Logic Unit
The Arithmetic Logic Unit (ALU) has three inputs:
◦ The two register inputs are commonly called A and B
◦ A and B must be the same width.
◦ The ALU operation determines which operation’s result will be output
◦ ALU operation is 2-4 bits.

The ALU has three primary outputs
◦ The Result must be the same width as A and B.  In a 32-bit ALU this is

32 bits.  In a 16-bit ALU this will be 16 bits, etc.
◦ Zero is 1-bit.  It will be 1 if all of the bits of Result are 0s.  It will be 0 if any 

bit of Result is not 0.  
◦ Overflow is also a 1-bit signal.  It will be 1 if overflow is detected.



Example: Arithmetic Logic Unit
Label the inputs and outputs of the following 32 bit Arithmetic Logic Unit.  Identify how many 
bits would be used to represent each value.

Given:



Example: Arithmetic Logic Unit
Label the inputs and outputs of the following 32 bit Arithmetic Logic Unit.  Identify how many 
bits would be used to represent each value.

Since the ALU is shown in isolation, we 
can give the inputs generic placeholders
like A and B, X and Y, or Input 1 and
Input 2.  The only thing to keep in 
mind is that our labels should indicate
they two inputs are distinct.  There are
two separate input buses. 

Given:

Partial 
Credit 1:

Solution 1:

A

B



Example: Arithmetic Logic Unit
Label the inputs and outputs of the following 32 bit Arithmetic Logic Unit.  Identify how many 
bits would be used to represent each value.

The number of bits used to represent
A and B are referred to as the “width”
of those buses.  The width of the input
buses has to match the width of
the ALU itself. In this case, we’re told
that this is a 32-bit ALU.

Given:

Partial 
Credit 2:

Solution 2:

A, 32 bits

B, 32 bits



Example: Arithmetic Logic Unit
Label the inputs and outputs of the following 32 bit Arithmetic Logic Unit.  Identify how many 
bits would be used to represent each value.

There are three outputs we want
to represent in our ALU diagram.
The first is the result.  Remember,
the ALU will calculate the result of
several operations at once, but only
one will be sent to the output bus.
This result is also the same width as 
the ALU.

Given:

Partial 
Credit 3:

Solution 3:

A, 32 bits

B, 32 bits

Result, 32 bits



Example: Arithmetic Logic Unit
Label the inputs and outputs of the following 32 bit Arithmetic Logic Unit.  Identify how many 
bits would be used to represent each value.

Our other two outputs are Overflow
and Zero. Zero indicates if the result
is equal to zero or not.
This output only needs 1 bit as it will 
either be asserted or deasserted.

Given:

Partial 
Credit 4:

Solution 4:

A, 32 bits

B, 32 bits

Result, 32 bits

Zero, 1 bit



Example: Arithmetic Logic Unit
Label the inputs and outputs of the following 32 bit Arithmetic Logic Unit.  Identify how many 
bits would be used to represent each value.

Our other two outputs are Overflow
and Zero. Overflow indicates if there
was an overflow error in the arithmetic.
This output only needs 1 bit as it will 
either be asserted or deasserted.

Given:

Partial 
Credit 5:

Solution 5:

A, 32 bits

B, 32 bits

Result, 32 bits

Zero, 1 bit

Overflow, 1 bit



Example: Arithmetic Logic Unit
Assume we have a 8-bit Arithmetic Logic Unit. List the inputs and outputs in binary for the ALU 
if we are using it to determine if A = 2510 < B = 2810. Remember: the ALU has three inputs and 
three outputs. The selection value will be (11)2 for Set on Less Than. Use 8 bits or 1 bit to 
represent the remaining inputs and outputs as appropriate.

Given:



Example: Arithmetic Logic Unit
Assume we have a 8-bit Arithmetic Logic Unit. List the inputs and outputs in binary for the ALU 
if we are using it to determine if A = 2510 < B = 2810. Remember: the ALU has three inputs and 
three outputs. The selection value will be (11)2 for Set on Less Than. Use 8 bits or 1 bit to 
represent the remaining inputs and outputs as appropriate.

This question asks us to follow the same process as the ALU for completing the Set on Less Than 
operation.  In this operation we determine if A is less than B by subtracting B from A and 
checking the sign.  Our first step is to show A and B in 2’s complement binary using 8 bits.

A = 0001 1001

B = 0001 1100

Given:

Partial 
Credit 1:

Solution 1:



Example: Arithmetic Logic Unit
Assume we have a 8-bit Arithmetic Logic Unit. List the inputs and outputs in binary for the ALU 
if we are using it to determine if A = 2510 < B = 2810. Remember: the ALU has three inputs and 
three outputs. The selection value will be (11)2 for Set on Less Than. Use 8 bits or 1 bit to 
represent the remaining inputs and outputs as appropriate.

Now we can calculate A-B. This is the same as A + -B, so we should invert B and add 1.

B  = 0001 1100

B’ = 1110 0011 Note that the bitwise inverse of B is not the same as B * -1.

-B = 1110 0100

Given:

Partial 
Credit 2:

Solution 2:



Example: Arithmetic Logic Unit
Assume we have a 8-bit Arithmetic Logic Unit. List the inputs and outputs in binary for the ALU 
if we are using it to determine if A = 2510 < B = 2810. Remember: the ALU has three inputs and 
three outputs. The selection value will be (11)2 for Set on Less Than. Use 8 bits or 1 bit to 
represent the remaining inputs and outputs as appropriate.

Now we can calculate A-B. This is the same as A + -B:

0 0000 0000 <- This line shows the carries for each column.  We can use this to

A     = 0001 1001 set the overflow output.  Since the carry-in and the carry-out for

-B    = 1110 0100 the most significant bit is the same, there is no overflow.

A-B  = 1111 1101 Overflow = 0

Given:

Partial 
Credit 3:

Solution 3:



Example: Arithmetic Logic Unit
Assume we have a 8-bit Arithmetic Logic Unit. List the inputs and outputs in binary for the ALU 
if we are using it to determine if A = 2510 < B = 2810. Remember: the ALU has three inputs and 
three outputs. The selection value will be (11)2 for Set on Less Than. Use 8 bits or 1 bit to 
represent the remaining inputs and outputs as appropriate.

Based on the sign bit of the result of A-B we can set the result of the ALU.  Everything but the 
least significant bit is set to 0.  The least significant bit is the same as the sign bit from A-B. 
Remember the result field should have the same number of bits as the ALU.

A-B  = 1111 1101
Result = 0000 0001 

Given:

Partial 
Credit 4:

Solution 4:



Example: Arithmetic Logic Unit
Assume we have a 8-bit Arithmetic Logic Unit. List the inputs and outputs in binary for the ALU 
if we are using it to determine if A = 2510 < B = 2810. Remember: the ALU has three inputs and 
three outputs. The selection value will be (11)2 for Set on Less Than. Use 8 bits or 1 bit to 
represent the remaining inputs and outputs as appropriate.

Finally, we can set the Zero output.  We can calculate it by NOR’ing all of the bits of the result.  If 
any bit in the result is equal to 1, an 8 fan-in NOR gate will produce a 0.  Only if all the bits of the 
result are 0 will an 8 fan-in NOR gate produce a 1.

Result = 0000 0001 
Zero = 0 NOR 0 NOR 0 NOR 0 NOR 0 NOR 0 NOR 0 NOR 1
Zero = 0

Given:

Partial 
Credit 5:

Solution 5:



Example: Arithmetic Logic Unit
Assume we have a 8-bit Arithmetic Logic Unit. List the inputs and outputs in binary for the ALU 
if we are using it to determine if A = 2510 < B = 2810. Remember: the ALU has three inputs and 
three outputs. The selection value will be (11)2 for Set on Less Than. Use 8 bits or 1 bit to 
represent the remaining inputs and outputs as appropriate.

As a final step, we can list each of these values so they’re easy to identify visually.

A = (0001 1001)2
B = (0001 1100) 2
Result = (0000 0001) 2
Overflow = (0) 2
Zero = (0) 2

Given:

Partial 
Credit 6:

Solution 6:



Review: Binary Multiplication
In class we discussed several methods of multiplying binary values.  The paper and pencil 
method follows the mathematical algorithm we use for decimal integers.  This is the foundation 
of our multiplication algorithm.  We were able to reduce the hardware cost by tweaking the 
algorithm in small ways, combining registers, and reducing the size of some registers.

The algorithms we want to remember are the final version of this method and Booth’s 
algorithm.



Review: Binary Multiplication
In the course material this is referred to as Multiplication Algorithm Version 3.  Our hardware 
consists of a 32-bit multiplicand register, a 32-bit arithmetic logic unit, and a 64-bit product 
register.

We start by placing the multiplier in the lower half of the product register.  Our action for each 
iteration is determined by the least significant bit of the multiplier in the product register.  We 
will do the same number of iterations as the width of the multiplicand register.  If the least 
significant bit is 1 we add the multiplicand to the upper half of the product register and place 
the result back in the upper half of the product register.  

If the least significant bit is 0, we do not perform an arithmetic operation.  Regardless of the 
value of the bit, we will shift the product register “down” or to the right one bit.  This will discard 
the current least significant bit and a new bit will move into that position.



Review: Binary Multiplication
Hardware diagram:

Control
testWrite

32 bits

64 bits

Shift rightProduct

Multiplicand

32-bit ALU



Example: Binary Multiplication
Determine AxB using the third multiplication algorithm for the following 8-bit numbers. Use A = 
(0110 1111)2 for the multiplier and B = (0001 1101)2 for the multiplicand.

We want to represent both the hardware we’re using and the steps we’re taking.  Since we have 
8 bit numbers, we should assume we will have an 8-bit multiplicand register and a 16-bit 
product register.  The product register is always double the size of the multiplicand register.  We 
will perform 8 iterations of the algorithm.  The number of iterations is equal to the number of 
bits in the multiplicand register.

Iter. Step Product Multiplicand Action

Given:

Partial 
Credit 1:

Solution 1:



Example: Binary Multiplication
Determine AxB using the third multiplication algorithm for the following 8-bit numbers. Use A = 
(0110 1111)2 for the multiplier and B = (0001 1101)2 for the multiplicand.

To initialize our hardware, we place the multiplicand in the multiplicand register.  In the problem 
statement we are told which value to use as the multiplicand.  The multiplier is placed in the 
lower half of the product register.  The upper half of the product register is initialized to zero.

Iter. Step Product Multiplicand Action

0 0 0000 0000 0110 1111 0001 1101 Initialize

Given:

Partial 
Credit 2:

Solution 2:



Example: Binary Multiplication
Determine AxB using the third multiplication algorithm for the following 8-bit numbers. Use A = 
(0110 1111)2 for the multiplier and B = (0001 1101)2 for the multiplicand.

Now we can start the first iteration.  Each iteration has two steps.  In step one we may add or do 
nothing based on the least significant bit of the product register.  In step two we shift the product 
register to the right one bit.

Since the least significant bit is 1, we add the multiplicand to the upper half of the produce register 
and place the result in the upper half of the product register.  In other words, we add 0001 1101 and 
0000 000 and place 0001 1101 in the upper half of the product register.

Iter. Step Product Multiplicand Action

0 0 0000 0000 0110 1111 0001 1101 Initialize
1 1a. 0001 1101 0110 1111 0001 1101 Add

1 2 0000 1110 1011 0111 0001 1101 Shift

Given:

Partial 
Credit 3:

Solution 3:



Example: Binary Multiplication
Determine AxB using the third multiplication algorithm for the following 8-bit numbers. Use A = 
(0110 1111)2 for the multiplier and B = (0001 1101)2 for the multiplicand.

In the second iteration, the
least significant bit is again 1.

We need to add the
multiplicand to the upper
half of the product register:

0000 1110
0001 1101
0010 1011

Given:

Partial 
Credit 4:

Solution 4:

Iter. Step Product Multiplicand Action
0 0 0000 0000 0110 1111 0001 1101 Initialize
1 1a. 0001 1101 0110 1111 0001 1101 Add
1 2 0000 1110 1011 0111 0001 1101 Shift
2 1a. 0010 1011 1011 0111 0001 1101 Add
2 2 0001 0101 1101 1011 0001 1101 Shift



Example: Binary Multiplication
Determine AxB using the third multiplication algorithm for the following 8-bit numbers. Use A = 
(0110 1111)2 for the multiplier and B = (0001 1101)2 for the multiplicand.

In the third iteration, the
least significant bit is again 1.

We need to add the
multiplicand to the upper
half of the product register:

0001 0101
0001 1101
0011 0010

Given:

Partial 
Credit 5:

Solution 5:

Iter. Step Product Multiplicand Action
0 0 0000 0000 0110 1111 0001 1101 Initialize
1 1a. 0001 1101 0110 1111 0001 1101 Add
1 2 0000 1110 1011 0111 0001 1101 Shift
2 1a. 0010 1011 1011 0111 0001 1101 Add
2 2 0001 0101 1101 1011 0001 1101 Shift
3 1a. 0011 0010 1101 1011 0001 1101 Add
3 2 0001 1001 0110 1101 0001 1101 Shift



Example: Binary Multiplication
Determine AxB using the third multiplication algorithm for the following 8-bit numbers. Use A = 
(0110 1111)2 for the multiplier and B = (0001 1101)2 for the multiplicand.

In the 4th iteration, the
least significant bit is again 1.

We need to add the
multiplicand to the upper
half of the product register:

0001 1001
0001 1101
0011 0110

Given:

Partial 
Credit 6:

Solution 6:

Iter. Step Product Multiplicand Action
0 0 0000 0000 0110 1111 0001 1101 Initialize
1 1a. 0001 1101 0110 1111 0001 1101 Add
1 2 0000 1110 1011 0111 0001 1101 Shift
2 1a. 0010 1011 1011 0111 0001 1101 Add
2 2 0001 0101 1101 1011 0001 1101 Shift
3 1a. 0011 0010 1101 1011 0001 1101 Add
3 2 0001 1001 0110 1101 0001 1101 Shift
4 1a. 0011 0110 0110 1101 0001 1101 Add
4 2 0001 1011 0011 0110 0001 1101 Shift



Example: Binary Multiplication
Determine AxB using the third multiplication algorithm for the following 8-bit numbers. Use A = 
(0110 1111)2 for the multiplier and B = (0001 1101)2 for the multiplicand.

In the 5th iteration, the
least significant bit is 0.

We do not need to do any
arithmetic in this case and
we can proceed to the 
shift step.

Given:

Partial 
Credit 7:

Solution 7:

Iter. Step Product Multiplicand Action
0 0 0000 0000 0110 1111 0001 1101 Initialize
1 1a. 0001 1101 0110 1111 0001 1101 Add
1 2 0000 1110 1011 0111 0001 1101 Shift
2 1a. 0010 1011 1011 0111 0001 1101 Add
2 2 0001 0101 1101 1011 0001 1101 Shift
3 1a. 0011 0010 1101 1011 0001 1101 Add
3 2 0001 1001 0110 1101 0001 1101 Shift
4 1a. 0011 0110 0110 1101 0001 1101 Add
4 2 0001 1011 0011 0110 0001 1101 Shift
5 1a. 0001 1011 0011 0110 0001 1101 No action
5 2 0000 1101 1001 1011 0001 1101 Shift



Example: Binary Multiplication
Determine AxB using the third 
multiplication algorithm for 
the following 8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

In the 6th iteration, the
least significant bit is 1, so 
we need to add.

0000 1101
0001 1101
0010 1010

Given:

Partial 
Credit 8:

Solution 8:

Iter. Step Product Multiplicand Action
0 0 0000 0000 0110 1111 0001 1101 Initialize
1 1a. 0001 1101 0110 1111 0001 1101 Add
1 2 0000 1110 1011 0111 0001 1101 Shift
2 1a. 0010 1011 1011 0111 0001 1101 Add
2 2 0001 0101 1101 1011 0001 1101 Shift
3 1a. 0011 0010 1101 1011 0001 1101 Add
3 2 0001 1001 0110 1101 0001 1101 Shift
4 1a. 0011 0110 0110 1101 0001 1101 Add
4 2 0001 1011 0011 0110 0001 1101 Shift
5 1a. 0001 1011 0011 0110 0001 1101 No action
5 2 0000 1101 1001 1011 0001 1101 Shift
6 1a. 0010 1010 1001 1011 0001 1101 Add
6 2 0001 0101 0100 1101 0001 1101 Shift



Example: Binary Multiplication
Determine AxB using the third 
multiplication algorithm for 
the following 8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

In the 7th iteration, the
least significant bit is 1, so 
we need to add.

0001 0101
0001 1101
0011 0010

Given:

Partial 
Credit 9:

Solution 9:

Iter. Step Product Multiplicand Action
0 0 0000 0000 0110 1111 0001 1101 Initialize
1 1a. 0001 1101 0110 1111 0001 1101 Add
1 2 0000 1110 1011 0111 0001 1101 Shift
2 1a. 0010 1011 1011 0111 0001 1101 Add
2 2 0001 0101 1101 1011 0001 1101 Shift
3 1a. 0011 0010 1101 1011 0001 1101 Add
3 2 0001 1001 0110 1101 0001 1101 Shift
4 1a. 0011 0110 0110 1101 0001 1101 Add
4 2 0001 1011 0011 0110 0001 1101 Shift
5 1a. 0001 1011 0011 0110 0001 1101 No action
5 2 0000 1101 1001 1011 0001 1101 Shift
6 1a. 0010 1010 1001 1011 0001 1101 Add
6 2 0001 0101 0100 1101 0001 1101 Shift
7 1a. 0011 0010 0100 1101 0001 1101 Add
7 2 0001 1001 0010 0110 0001 1101 Shift



Example: Binary Multiplication
Determine AxB using the third 
multiplication algorithm for 
the following 8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

In the 8th iteration, the
least significant bit is 0.

We do not need to do any
arithmetic in this case and
we can proceed to the 
shift step.

Given:

Partial 
Credit 10:

Solution 10:

Iter. Step Product Multiplicand Action
0 0 0000 0000 0110 1111 0001 1101 Initialize
1 1a. 0001 1101 0110 1111 0001 1101 Add
1 2 0000 1110 1011 0111 0001 1101 Shift
2 1a. 0010 1011 1011 0111 0001 1101 Add
2 2 0001 0101 1101 1011 0001 1101 Shift
3 1a. 0011 0010 1101 1011 0001 1101 Add
3 2 0001 1001 0110 1101 0001 1101 Shift
4 1a. 0011 0110 0110 1101 0001 1101 Add
4 2 0001 1011 0011 0110 0001 1101 Shift
5 1 0001 1011 0011 0110 0001 1101 No action
5 2 0000 1101 1001 1011 0001 1101 Shift
6 1a. 0010 1010 1001 1011 0001 1101 Add
6 2 0001 0101 0100 1101 0001 1101 Shift
7 1a. 0011 0010 0100 1101 0001 1101 Add
7 2 0001 1001 0010 0110 0001 1101 Shift
8 1 0001 1001 0010 0110 0001 1101 No action
8 2 0000 1100 1001 0011 0001 1101 Shift



Example: Binary Multiplication
Determine AxB using the third 
multiplication algorithm for 
the following 8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

We have completed all the
iterations.

Our final answer is that AxB =
(0000 1100 1001 0011)2

Given:

Partial 
Credit 10:

Solution 10:

Iter. Step Product Multiplicand Action
0 0 0000 0000 0110 1111 0001 1101 Initialize
1 1a. 0001 1101 0110 1111 0001 1101 Add
1 2 0000 1110 1011 0111 0001 1101 Shift
2 1a. 0010 1011 1011 0111 0001 1101 Add
2 2 0001 0101 1101 1011 0001 1101 Shift
3 1a. 0011 0010 1101 1011 0001 1101 Add
3 2 0001 1001 0110 1101 0001 1101 Shift
4 1a. 0011 0110 0110 1101 0001 1101 Add
4 2 0001 1011 0011 0110 0001 1101 Shift
5 1 0001 1011 0011 0110 0001 1101 No action
5 2 0000 1101 1001 1011 0001 1101 Shift
6 1a. 0010 1010 1001 1011 0001 1101 Add
6 2 0001 0101 0100 1101 0001 1101 Shift
7 1a. 0011 0010 0100 1101 0001 1101 Add
7 2 0001 1001 0010 0110 0001 1101 Shift
8 1 0001 1001 0010 0110 0001 1101 No action
8 2 0000 1100 1001 0011 0001 1101 Shift



Review: Booth’s Algorithm
Notice how in the previous example both of our input values were positive.  The multiplication 
algorithm only supports positive values.  If we have a negative number we have to convert it to 
positive, perform the multiplication, and then adjust the sign of the result if needed.

Booth’s Algorithm is a different method that works for negative as well as positive values.  We 
need to identify when a series of 1’s begins and ends (called a “run” of 1’s).  When a run begins, 
we will subtract the multiplicand.  When a run ends, we will add the multiplicand.  In the middle 
of a run we do not need to do any arithmetic.  Similarly, in the middle of a series of zeros we do 
not need to do any arithmetic.

In our shift step we need to perform an arithmetic shift.  We need to preserve the sign bit of the 
product register by shifting in a copy of the most significant bit (the sign bit).

This algorithm uses the same hardware as the previous one.



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

The setup for Booth’s algorithm 
similar to the previous algorithm.

We also need to track the 
previous least significant
bit so we identify the
beginning and end of runs.

Given:

Partial 
Credit 1:

Solution 1:

Iter. Step Product Previous Action



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

It’s also helpful to keep track
of the multiplicand and the
result of multiplicand * -1.

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011

Note: only the multiplicand is stored in the hardware.  The ALU is capable of calculating A-B 
without storing –B.

Given:

Partial 
Credit 2:

Solution2:

Iter. Step Product Previous Action



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

To identify runs we compare
the least significant bit of 
the product register with the
“previous” bit.

These two bits together form
a pattern. In this case: 10.

This tells we are starting a
run of 1’s.

Given:

Partial 
Credit 3:

Solution 3:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

Since we are starting a
run of 1’s we are going
to subtract the 
multiplicand from the 
upper half of the product
register and place the
result in the upper half of
the product register.

Given:

Partial 
Credit 3:

Solution 3:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

After the arithmetic, we need
to perform an arithmetic 
shift.  Since the most
significant bit is 1, we need to
shift in a 1.

The current least significant bit
of the product is shifted into
previous.

Given:

Partial 
Credit 3:

Solution 3:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

To start the 2nd iteration,
compare the least
significant bit of the product
with previous.  Since they
are both 1, we are in the middle
of a run and do not need to
do any arithmetic.

Given:

Partial 
Credit 4:

Solution 4:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift
2 1.11 1111 0001 1011 0111 1 No action

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

In our shift step, we need to
again shift in a 1 because the
most significant bit of the
product is a 1.

Given:

Partial 
Credit 4:

Solution 4:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift
2 1.11 1111 0001 1011 0111 1 No action
2 2 1111 1000 1101 1011 1 Shift

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

Our 3rd iteration is similar. 
We are still in the middle of 
a run of 1’s.  So we can
proceed directly to the shift
step. Remember to shift in
a copy of the most 
significant bit of the product.

Given:

Partial 
Credit 5:

Solution 5:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift
2 1.11 1111 0001 1011 0111 1 No action
2 2 1111 1000 1101 1011 1 Shift
3 1.11 1111 1000 1101 1011 1 No action
3 2 1111 1100 0110 1101 1 Shift

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

Our 4th iteration is similar. 
We are still in the middle of 
a run of 1’s.  So we can
proceed directly to the shift
step. Remember to shift in
a copy of the most 
significant bit of the product.

Given:

Partial 
Credit 6:

Solution 6:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift
2 1.11 1111 0001 1011 0111 1 No action
2 2 1111 1000 1101 1011 1 Shift
3 1.11 1111 1000 1101 1011 1 No action
3 2 1111 1100 0110 1101 1 Shift
4 1.11 1111 1100 0110 1101 1 No action
4 2 1111 1110 0011 0110 1 Shift

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2for the multiplicand.

Our 5th iteration introduces
a new patter: 01. This tells
us that we are ending a run
of 1’s and need to add: 

1111 1110
0001 1101
0001 1011
Then we can shift in a copy of 
the new most significant bit of 
the product register.

Given:

Partial 
Credit 7:

Solution 7:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift
2 1.11 1111 0001 1011 0111 1 No action
2 2 1111 1000 1101 1011 1 Shift
3 1.11 1111 1000 1101 1011 1 No action
3 2 1111 1100 0110 1101 1 Shift
4 1.11 1111 1100 0110 1101 1 No action
4 2 1111 1110 0011 0110 1 Shift
5 1.01 0001 1011 0011 0110 1 Add
5 2 0000 1101 1001 1011 0 Shift

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

In the 6th iteration we start a
new run, so we subtract: 

0000 1101
1110 0011
1111 0000

Then we can shift in a copy of 
the new most significant bit of 
the product register.

Given:

Partial 
Credit 8:

Solution 8:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift
2 1.11 1111 0001 1011 0111 1 No action
2 2 1111 1000 1101 1011 1 Shift
3 1.11 1111 1000 1101 1011 1 No action
3 2 1111 1100 0110 1101 1 Shift
4 1.11 1111 1100 0110 1101 1 No action
4 2 1111 1110 0011 0110 1 Shift
5 1.01 0001 1011 0011 0110 1 Add
5 2 0000 1101 1001 1011 0 Shift
6 1.10 1111 0000 1001 1011 0 Subtract
6 2 1111 1000 0100 1101 1 Shift

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

In the 7th iteration we 
continue our run and shift in
a copy of the most 
significant bit.

Given:

Partial 
Credit 9:

Solution 9:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift
2 1.11 1111 0001 1011 0111 1 No action
2 2 1111 1000 1101 1011 1 Shift
3 1.11 1111 1000 1101 1011 1 No action
3 2 1111 1100 0110 1101 1 Shift
4 1.11 1111 1100 0110 1101 1 No action
4 2 1111 1110 0011 0110 1 Shift
5 1.01 0001 1011 0011 0110 1 Add
5 2 0000 1101 1001 1011 0 Shift
6 1.10 1111 0000 1001 1011 0 Subtract
6 2 1111 1000 0100 1101 1 Shift
7 1.11 1111 1000 0100 1101 1 No action
7 2 1111 1100 0010 0110 1 Shift

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

In the 8th iteration we 
finish our run and need to add:

1111 1100
0001 1101
0001 1001

Then we can shift in a copy
of the new most significant
bit of the product register.

Given:

Partial 
Credit 10:

Solution 10:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift
2 1.11 1111 0001 1011 0111 1 No action
2 2 1111 1000 1101 1011 1 Shift
3 1.11 1111 1000 1101 1011 1 No action
3 2 1111 1100 0110 1101 1 Shift
4 1.11 1111 1100 0110 1101 1 No action
4 2 1111 1110 0011 0110 1 Shift
5 1.01 0001 1011 0011 0110 1 Add
5 2 0000 1101 1001 1011 0 Shift
6 1.10 1111 0000 1001 1011 0 Subtract
6 2 1111 1000 0100 1101 1 Shift
7 1.11 1111 1000 0100 1101 1 No action
7 2 1111 1100 0010 0110 1 Shift
8 1.01 0001 1001 0010 0110 1 Add
8 2 0000 1100 1001 0011 0 Shift

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Determine AxB using Booth’s 
algorithm for the following 
8-bit numbers.
Use A = (0110 1111)2 for the 
multiplier and B = (0001 1101)2
for the multiplicand.

We have completed all the
iterations.

Our final answer is that AxB =
(0000 1100 1001 0011)2

Given:

Partial 
Credit 11:

Solution 11:

Iter. Step Product Previous Action
0 0 0000 0000 0110 1111 0 Initalize
1. 1.10 1110 0011 0110 1111 0 Subtract
1 2 1111 0001 1011 0111 1 Shift
2 1.11 1111 0001 1011 0111 1 No action
2 2 1111 1000 1101 1011 1 Shift
3 1.11 1111 1000 1101 1011 1 No action
3 2 1111 1100 0110 1101 1 Shift
4 1.11 1111 1100 0110 1101 1 No action
4 2 1111 1110 0011 0110 1 Shift
5 1.01 0001 1011 0011 0110 1 Add
5 2 0000 1101 1001 1011 0 Shift
6 1.10 1111 0000 1001 1011 0 Subtract
6 2 1111 1000 0100 1101 1 Shift
7 1.11 1111 1000 0100 1101 1 No action
7 2 1111 1100 0010 0110 1 Shift
8 1.01 0001 1001 0010 0110 1 Add
8 2 0000 1100 1001 0011 0 Shift

Multiplicand  = 0001 1101
-Multiplicand = 1110 0011



Example: Booth’s Algorithm
Compare and contrast these two examples for multiplying A and B.  Which algorithm uses more 
arithmetic operations? Which algorithm is more efficient for AxB? Recall that shifts are more 
efficient than adds.

Note how we arrived at the same answer with both algorithms.  Go back and count how many 
arithmetic operations are performed for each.  These are just the addition and subtraction 
operations.  The algorithm with fewer arithmetic operations will ultimately perform less steps 
and is considered more efficient.  

The efficiency of Booth’s algorithm is dependent on the multiplier.  A long series of 1’s or 0’s can 
be dealt with very efficiently.  But a numerical pattern like 0101 will not be very efficient.  
However, Booth’s algorithm works with both positive and negative numbers so it is the preferred 
algorithm for multiplication.



Review: Binary Division
Unlike multiplication, there is only one division algorithm.  It uses the same hardware as 
multiplication, which means we do not need any additional hardware we just have to use the 
existing hardware a bit differently.

Even though we are using the same hardware, 
it might be helpful to relabel the pieces so we can 
see how they are used in the division algorithm.

The multiplicand register is repurposed as the
divisor register.  The product register is now
labeled the remainder register.

Write

32 bits

64 bits

Shift left
Shift right

Remainder

32-bit ALU

Divisor

Control
test



Review: Binary Division
We initialize the registers by placing the dividend in the lower half of the remainder register and 
then shifting it to the left once.

Then, in each iteration, we subtract the divisor from the upper half of the remainder register 
and place the result in the upper half of the remainder register.  We then need to check the sign 
of this result.

If it is negative we need to restore the previous value.  The hardware can do this by adding back 
the same value we just subtracted (the divisor).  We then shift the remainder to the left and 
shift in a 0.

If it positive, we shift the remainder to the left and shift in a 1.

If the divisor register is a 32-bit register we complete 32 iterations.  After all the iterations are 
complete, we need to shift just the upper half of the remainder register to the right one bit.



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

We want to represent both 
the hardware we’re using and 
the steps we’re taking.  Since 
we have 8 bit numbers, we 
should assume we will have 
an 8-bit divisor register and a 
16-bit remainder register. The
number of iterations is equal 
to the number of bits in the 
divisor register.

Given:

Partial 
Credit 1:

Solution 1:

Iter. Step Remainder Divisor Action



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

We place A in the lower half
of the remainder register and
then shift the remainder
register to the left 1 bit. This
is a logical shift: we shift in a 0.

B is the divisor. Since we will be
subtracting B, we should also 
calculate –B:

1110 0011

Given:

Partial 
Credit 1:

Solution 1:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

The first step of the iteration
is to subtract B from the left
half of the remainder register:

1110 0011

Since the result is negative, we
need to restore the previous
value and shift left, place a 
0 into the least significant 
position.

Given:

Partial 
Credit 2:

Solution 2:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize
1 1 1110 0011 1101 1110 0001 1101 Subtract
1 2b 0000 0001 1011 1100 0001 1101 Shift 0



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

The first step of the iteration
is to subtract B from the left
half of the remainder register:

0000 0001
1110 0011
1110 0100

Since the result is negative, we
need to restore the previous
value and shift left, place a 
0 into the least significant 
position.

Given:

Partial 
Credit 3:

Solution 3:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize
1 1 1110 0011 1101 1110 0001 1101 Subtract
1 2b 0000 0001 1011 1100 0001 1101 Shift 0
2 1 1110 0100 1011 1100 0001 1101 Subtract
2 2b 0000 0011 0111 1000 0001 1101 Shift 0



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

The first step of the iteration
is to subtract B from the left
half of the remainder register:

0000 0011
1110 0011
1110 0110 

Since the result is negative, we
need to restore the previous
value and shift left, place a 
0 into the least significant 
position.

Given:

Partial 
Credit 4:

Solution 4:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize
1 1 1110 0011 1101 1110 0001 1101 Subtract
1 2b 0000 0001 1011 1100 0001 1101 Shift 0
2 1 1110 0100 1011 1100 0001 1101 Subtract
2 2b 0000 0011 0111 1000 0001 1101 Shift 0
3 1 1110 0110 0111 1000 0001 1101 Subtract
3 2b 0000 0110 1111 0000 0001 1101 Shift 0



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

The first step of the iteration
is to subtract B from the left
half of the remainder register:

0000 0110
1110 0011
1110 1001 

Since the result is negative, we
need to restore the previous
value and shift left, place a 
0 into the least significant 
position.

Given:

Partial 
Credit 5:

Solution 5:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize
1 1 1110 0011 1101 1110 0001 1101 Subtract
1 2b 0000 0001 1011 1100 0001 1101 Shift 0
2 1 1110 0100 1011 1100 0001 1101 Subtract
2 2b 0000 0011 0111 1000 0001 1101 Shift 0
3 1 1110 0110 0111 1000 0001 1101 Subtract
3 2b 0000 0110 1111 0000 0001 1101 Shift 0
4 1 1110 1001 1111 0000 0001 1101 Subtract
4 2b 0000 1101 1110 0000 0001 1101 Shift 0



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

The first step of the iteration
is to subtract B from the left
half of the remainder register:

0000 1101
1110 0011
1111 0000 

Since the result is negative, we
need to restore the previous
value and shift left, place a 
0 into the least significant 
position.

Given:

Partial 
Credit 6:

Solution 6:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize
1 1 1110 0011 1101 1110 0001 1101 Subtract
1 2b 0000 0001 1011 1100 0001 1101 Shift 0
2 1 1110 0100 1011 1100 0001 1101 Subtract
2 2b 0000 0011 0111 1000 0001 1101 Shift 0
3 1 1110 0110 0111 1000 0001 1101 Subtract
3 2b 0000 0110 1111 0000 0001 1101 Shift 0
4 1 1110 1001 1111 0000 0001 1101 Subtract
4 2b 0000 1101 1110 0000 0001 1101 Shift 0
5 1 1111 0000 1110 0000 0001 1101 Subtract
5 2b 0001 1011 1100 0000 0001 1101 Shift 0



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

The first step of the iteration
is to subtract B from the left
half of the remainder register:

0001 1011
1110 0011
1111 1110 

Since the result is negative, we
need to restore the previous
value and shift left, place a 
0 into the least significant 
position.

Given:

Partial 
Credit 7:

Solution 7:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize
1 1 1110 0011 1101 1110 0001 1101 Subtract
1 2b 0000 0001 1011 1100 0001 1101 Shift 0
2 1 1110 0100 1011 1100 0001 1101 Subtract
2 2b 0000 0011 0111 1000 0001 1101 Shift 0
3 1 1110 0110 0111 1000 0001 1101 Subtract
3 2b 0000 0110 1111 0000 0001 1101 Shift 0
4 1 1110 1001 1111 0000 0001 1101 Subtract
4 2b 0000 1101 1110 0000 0001 1101 Shift 0
5 1 1111 0000 1110 0000 0001 1101 Subtract
5 2b 0001 1011 1100 0000 0001 1101 Shift 0
6 1 1111 1110 1100 0000 0001 1101 Subtract
6 2b 0011 0111 1000 0000 0001 1101 Shift 0



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

The first step of the iteration
is to subtract B from the left
half of the remainder register:

0011 0111
1110 0011
0001 1010 

Since the result is positive, we
leave the new upper half of the 
remainder register as it is and 
shift left, placing a 1 into the 
least significant position.

Given:

Partial 
Credit 8:

Solution 8:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize
1 1 1110 0011 1101 1110 0001 1101 Subtract
1 2b 0000 0001 1011 1100 0001 1101 Shift 0
2 1 1110 0100 1011 1100 0001 1101 Subtract
2 2b 0000 0011 0111 1000 0001 1101 Shift 0
3 1 1110 0110 0111 1000 0001 1101 Subtract
3 2b 0000 0110 1111 0000 0001 1101 Shift 0
4 1 1110 1001 1111 0000 0001 1101 Subtract
4 2b 0000 1101 1110 0000 0001 1101 Shift 0
5 1 1111 0000 1110 0000 0001 1101 Subtract
5 2b 0001 1011 1100 0000 0001 1101 Shift 0
6 1 1111 1110 1100 0000 0001 1101 Subtract
6 2b 0011 0111 1000 0000 0001 1101 Shift 0
7 1 0001 1010 1000 0000 0001 1101 Subtract
7 2a 0011 0101 0000 0001 0001 1101 Shift 1



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

The first step of the iteration
is to subtract B from the left
half of the remainder register:

0011 0101
1110 0011
0001 1000 

Since the result is positive, we
leave the new upper half of the 
remainder register as it is and 
shift left, placing a 1 into the 
least significant position.

Given:

Partial 
Credit 9:

Solution 9:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize
1 1 1110 0011 1101 1110 0001 1101 Subtract
1 2b 0000 0001 1011 1100 0001 1101 Shift 0
2 1 1110 0100 1011 1100 0001 1101 Subtract
2 2b 0000 0011 0111 1000 0001 1101 Shift 0
3 1 1110 0110 0111 1000 0001 1101 Subtract
3 2b 0000 0110 1111 0000 0001 1101 Shift 0
4 1 1110 1001 1111 0000 0001 1101 Subtract
4 2b 0000 1101 1110 0000 0001 1101 Shift 0
5 1 1111 0000 1110 0000 0001 1101 Subtract
5 2b 0001 1011 1100 0000 0001 1101 Shift 0
6 1 1111 1110 1100 0000 0001 1101 Subtract
6 2b 0011 0111 1000 0000 0001 1101 Shift 0
7 1 0001 1010 1000 0000 0001 1101 Subtract
7 2a 0011 0101 0000 0001 0001 1101 Shift 1
8 1 0001 1000 0000 0001 0001 1101 Subtract
8 2a 0011 0000 0000 0011 0001 1101 Shift 1



Example:  Binary Division
Determine A/B if 
A = (0110 1111)2 and 
B = (0001 1101)2.

Once all the iterations are 
complete, we need to take the
upper half and shift to the
right 1 bit: 0011 0000 >> 1

This is the remainder.

The lower half is the quotient.

A/B = (0000 0011)2; 
remainder (0001 1000)2

Given:

Partial 
Credit 10:

Solution 10:

Iter. Step Remainder Divisor Action
0 0 0000 0000 1101 1110 0001 1101 Initialize
1 1 1110 0011 1101 1110 0001 1101 Subtract
1 2b 0000 0001 1011 1100 0001 1101 Shift 0
2 1 1110 0100 1011 1100 0001 1101 Subtract
2 2b 0000 0011 0111 1000 0001 1101 Shift 0
3 1 1110 0110 0111 1000 0001 1101 Subtract
3 2b 0000 0110 1111 0000 0001 1101 Shift 0
4 1 1110 1001 1111 0000 0001 1101 Subtract
4 2b 0000 1101 1110 0000 0001 1101 Shift 0
5 1 1111 0000 1110 0000 0001 1101 Subtract
5 2b 0001 1011 1100 0000 0001 1101 Shift 0
6 1 1111 1110 1100 0000 0001 1101 Subtract
6 2b 0011 0111 1000 0000 0001 1101 Shift 0
7 1 0001 1010 1000 0000 0001 1101 Subtract
7 2a 0011 0101 0000 0001 0001 1101 Shift 1
8 1 0001 1000 0000 0001 0001 1101 Subtract
8 2a 0011 0000 0000 0011 0001 1101 Shift 1



Review: Real Numbers
In addition to integers, we have what is mathematically referred to as “real” numbers.  Real 
numbers include: whole numbers, fractional numbers, and irrational numbers.  They do not 
include imaginary numbers.

In programming these are called “float” values.  We represent them in scientific notation and 
the decimal point or the binary point “floats” or changes position as we normalize the value.



Review: Real Numbers
We use the IEEE 754 standard for representing floats.  We can use single (32-bits) or double (64-
bits) precision.
◦ Float values are represented in binary scientific notation 8.5 = 1000.1
◦ These values are then normalized 1.0001 * 23

◦ A sign bit is determined Sign = 0
◦ We calculate a biased exponent based on the level of precision Exponent = 3+127 or 3+1023
◦ The 1 in front of the binary point is not stored Mantissa = 0001
◦ The remaining bits will be zero, as trailing zeros will not affect the

value

◦ Single precision: 8.5 = 0 10000010 000 1000 0000 0000 0000 0000
◦ Double precision: 8.5 = 0 10000000010 0001 0000 0000 0000 0000 0000 

0000 0000 0000 0000 0000 0000 0000 



Example: Real Numbers
Let A = 64.75.  What is the representation of A in single precision IEEE-754 format?

Our first step is to convert 64.75 to binary.  Converting the whole number portion of the number 
is the same as converting an unsigned binary integer.

64 = 2 * 32 + 0
32 = 2 * 16 + 0
16 = 2 * 8 + 0
8   = 2 * 4 + 0
4   = 2 * 2 + 0
2   = 2 * 1 + 0
1   = 2 * 0 + 1

Given:

Partial 
Credit 1:

Solution 1:



Example: Real Numbers
Let A = 64.75.  What is the representation of A in single precision IEEE-754 format?

Converting the fractional portion of the number uses a complementary process.  Instead of 
dividing by two, we multiply by two.  We need to multiply the fractional portion of our result 
until we reach an infinitely repeating pattern.

.75 * 2 = 1.5

.5   * 2 = 1.0

.0   * 2 = 0.0 <- we can continue to multiply 0 by 2, but we will always get 0

The whole number portion of our results form the bits of the initial mantissa from top to 
bottom:  .110

The rest of the mantissa is filled in with zeros.

Given:

Partial 
Credit 2:

Solution 2:



Example: Real Numbers
Let A = 64.75.  What is the representation of A in single precision IEEE-754 format?

Now we need to represent 64.75 in binary scientific notation.  

We have calculated both portions so we simply place them together with a binary point 
between them:

1000000.11 * 20

Given:

Partial 
Credit 3:

Solution 3:



Example: Real Numbers
Let A = 64.75.  What is the representation of A in single precision IEEE-754 format?

Our next step is to normalize the value.

1000000.11 * 20 = 1.00000011 * 26

Given:

Partial 
Credit 4:

Solution 4:



Example: Real Numbers
Let A = 64.75.  What is the representation of A in single precision IEEE-754 format?

Now we can start filling the fields of A in single precision format.  This format has 32 bits 
separated into three fields: 1-bit sign, 8-bit exponent, 23-bit mantissa.

The original number is positive, so the sign bit will be 0.

Given:

Partial 
Credit 5:

Solution 5:



Example: Real Numbers
Let A = 64.75.  What is the representation of A in single precision IEEE-754 format?

In the IEEE-754 standard the exponent we store is actually higher than the actual exponent.  This 
allows us to store negative exponents without changing our representation.  The difference 
between the actual exponent and the stored exponent is called the bias.  In single precision, the 
bias is 127.

The original exponent is 6.
The stored exponent should be 6 + 127 = 133
We store this in 8 bits: 10000101

Given:

Partial 
Credit 6:

Solution 6:



Example: Real Numbers
Let A = 64.75.  What is the representation of A in single precision IEEE-754 format?

The mantissa field is 23 bits wide.  However, we only store the values on the right side of the 
binary point.

1.00000011

Mantissa: 000 0001 1000 0000 0000 0000

Given:

Partial 
Credit 7:

Solution 7:



Example: Real Numbers
Let A = 64.75.  What is the representation of A in single precision IEEE-754 format?

Our final step is to put the three fields together to form a full 32 bit number.

Sign: 0
Exponent: 10000101
Mantissa: 000 0001 1000 0000 0000 0000

A = 0 10000101 000 0001 1000 0000 0000 0000

Given:

Partial 
Credit 8:

Solution 8:



Example: Real Numbers
Let A = 1100 0010 0000 1010 0000 0000 0000 0000.  If A is a single precision float value written 
in the IEEE 754 standard, what decimal value does it represent?

We know that single precision has three fields so the first step is to identify those three fields in 
the bitstring we are given for A.

The first bit is the sign bit. 1
The next 8 bits are the biased exponent. 10000100
The final 23 bits are the mantissa. 000 1010 0000 0000 0000 0000

Given:

Partial 
Credit 1:

Solution 1:



Example: Real Numbers
Let A = 1100 0010 0000 1010 0000 0000 0000 0000.  If A is a single precision float value written 
in the IEEE 754 standard, what decimal value does it represent?

Now we can translate each field into a normalized scientific binary value.

Since the sign bit is 1, the number is negative.  The stored exponent is higher than the actual 
exponent, so we need to remove the bias.  The actual exponent is 10000100 – 127 = 132 – 127 = 
5.  With the mantissa we need to add in the implied 1. that is not stored: 1.000101

Altogether A = -1.000101 * 25

Given:

Partial 
Credit 2:

Solution 2:



Example: Real Numbers
Let A = 1100 0010 0000 1010 0000 0000 0000 0000.  If A is a single precision float value written 
in the IEEE 754 standard, what decimal value does it represent?

Now that we have A = -1.000101 * 25 we can convert this to base 10.  First, “denormalize” the 
value until the exponent is 0.

A = -1.000101 * 25 = -100010.1 * 20

Multiplying by 20 is the same as multiplying by 1, so this can be dropped.

Given:

Partial 
Credit 3:

Solution 3:



Example: Real Numbers
Let A = 1100 0010 0000 1010 0000 0000 0000 0000.  If A is a single precision float value written 
in the IEEE 754 standard, what decimal value does it represent?

Converting to base 10 after the number is denormalized is the same as converting an unsigned 
binary value to base 10.

A = -100010.1

A = -1 * (1*25 + 0*24 + 0*23 + 0*22 + 1*21 + 0*20 + 1*2-1)

A = -1 * (32 + 2 + .5)

A = -34.5

Given:

Partial 
Credit 4:

Solution 4:



Review: Floating Point Addition
Arithmetic with real number is a bit more complicated that integers.
We get to use all of the same hardware, but we need to follow a 
different algorithm to ensure we get the correct answer.

The addition algorithm is shown in the activity diagram to the right.

Subtraction is handled with the same algorithm.  Instead of adding
in the second step we subtract the mantissas instead.



Example: Floating Point Addition
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X + Y and 
express the final answer in single precision IEEE 754-floating point representation.

The easiest way to follow the algorithm is to first show X and Y in normalized scientific notation.

X = 1. 01111 * 2(01111111)

X = 1. 01111 * 2127 

Y = 1. 1111 * 2(01110011)

Y = 1. 1111 * 2115

Given:

Partial 
Credit 1:

Solution1:



Example: Floating Point Addition
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X + Y and 
express the final answer in single precision IEEE 754-floating point representation.

The first step of the algorithm is to align the binary points of both values.  This is typically done 
by denomalizing the smaller value.  In this case Y is smaller, so we will move the binary point of Y 
until it has the same exponent as X.

Y = 1. 1111 * 2115

Y = 0.000 0000 0000 1111 1 * 2127

Given:

Partial 
Credit 2:

Solution2:



Example: Floating Point Addition
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X + Y and 
express the final answer in single precision IEEE 754-floating point representation.

Now we can add X and Y together using binary addition:

X + Y = 

1. 011 1100 0000 0000 0 * 2127 

0. 000 0000 0000 1111 1 * 2127

1. 011 1100 0000 1111 1 * 2127

Given:

Partial 
Credit 3:

Solution 3:



Example: Floating Point Addition
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X + Y and 
express the final answer in single precision IEEE 754-floating point representation.

1. 011 1100 0000 1111 1 * 2127  This value is already normalized.  So we just need to represent it
in single precisión IEEE 754 format.  The sign is positive and the exponent is the same as the
original exponent for X.

X+Y = (0011 1111 1011 1100 0000 1111 1000 0000)2

Given:

Partial 
Credit 4:

Solution 4:



Review: Floating Point Multiplication
The multiplication algorithm is shown in the activity diagram to 
the right.

Division requires a few modifications.  Instead of adding the exponents,
we subtract.  Instead of multiplying the mantissas we divide. 



Example: Floating Point Multiplication
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X * Y and 
express the final answer in single precision IEEE 754-floating point representation.



Example: Floating Point Multiplication
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X * Y and 
express the final answer in single precision IEEE 754-floating point representation.

The easiest way to follow the algorithm is to first show X and Y in normalized scientific notation.

X = 1. 01111 * 2(01111111)

X = 1. 01111 * 2127 

Y = 1. 1111 * 2(01110011)

Y = 1. 1111 * 2115

Given:

Partial 
Credit 1:

Solution1:



Example: Floating Point Multiplication
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X * Y and 
express the final answer in single precision IEEE 754-floating point representation.

An easy method to handle decimal places in multiplication is to denormalize both values so that 
there are no 1’s after the binary point.

X = 1. 01111 * 2127 

X = 101111 * 2122 

Y = 1. 1111 * 2115

Y = 11111 * 2111

Given:

Partial 
Credit 2:

Solution 2:



Example: Floating Point Multiplication
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X * Y and 
express the final answer in single precision IEEE 754-floating point representation.

The exponent of our result will be the two exponents of X and Y added together.  These 
exponents are biased, so we need to deduct the bias from the answer.  (If we had removed the 
bias earlier, there would be no need to subtract 127.)

Exponent = 122 + 111 – 127 = 106

Given:

Partial 
Credit 3:

Solution 3:



Example: Floating Point Multiplication
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X * Y and 
express the final answer in single precision IEEE 754-floating point representation.

Now we can multiply the mantissa using any multiplication process.  

Given:

Partial 
Credit 4:

Solution 4:

101111
* 11111
101111

101111
101111

101111
__ 101111_______

10110110001



Example: Floating Point Multiplication
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X * Y and 
express the final answer in single precision IEEE 754-floating point representation.

Our next step is to normalize the result.

X * Y = 10110110001 * 2106

X * Y = 1.0110110001 * 2116

Given:

Partial 
Credit 5:

Solution 5:



Example: Floating Point Multiplication
Suppose X = (0011 1111 1011 1100 0000 0000 0000 0000)2 and Y = (0011 1001 1111 1000 0000 
0000 0000 0000)2 in single precision IEEE-754 floating point numbers.  Determine X * Y and 
express the final answer in single precision IEEE 754-floating point representation.

X * Y = 1.0110110001 * 2116.  Finally we need to represent this in single precision IEEE 754-
floating point representation.  The sign is positive and the exponent is 01110100.

X * Y = (0011 1010 0011 0110 0010 0000 0000 0000)2

Given:

Partial 
Credit 6:

Solution 6:


	CDA 3103: Study Set 4
	Review: Binary Addition
	Example: Binary Addition
	Example: Binary Addition
	Example: Binary Addition
	Example: Binary Addition
	Example: Binary Addition
	Review: Overflow
	Example: Binary Overflow
	Review: Binary Subtraction
	Example: Binary Subtraction
	Example: Binary Subtraction
	Example: Binary Subtraction
	Example: Binary Subtraction
	Example: Binary Subtraction
	Example: Binary Subtraction
	Review: Ripple-Carry Adder
	Review: Ripple-Carry Adder
	Review: Ripple-Carry Adder
	Review: Arithmetic Logic Unit
	Review: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Example: Arithmetic Logic Unit
	Review: Binary Multiplication
	Review: Binary Multiplication
	Review: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Example: Binary Multiplication
	Review: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Example: Booth’s Algorithm
	Review: Binary Division
	Review: Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Example:  Binary Division
	Review: Real Numbers
	Review: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Example: Real Numbers
	Review: Floating Point Addition
	Example: Floating Point Addition
	Example: Floating Point Addition
	Example: Floating Point Addition
	Example: Floating Point Addition
	Review: Floating Point Multiplication
	Example: Floating Point Multiplication
	Example: Floating Point Multiplication
	Example: Floating Point Multiplication
	Example: Floating Point Multiplication
	Example: Floating Point Multiplication
	Example: Floating Point Multiplication
	Example: Floating Point Multiplication

