CDA 3103: Study Set 1

BINARY CONVERSIONS, SIGNED BINARY VALUES, BINARY ADDITION, binary subtraction, overflow

Review: Converting from Binary (Unsigned)

Given a value in binary, separate each bit from most significant to least significant and apply the following formula. The least significant bit is a_{0}, the next least significant bit is a_{1}, and so on. " b " is the base of the original number and in this case should be 2 .

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots .+a_{1} b+a_{0}
$$

Example: Converting from Binary (Unsigned)

Given: Let $A=(11001111) 2$. What decimal value does this represent if A is unsigned?

Partial Credit 1:

Place the bits of A into the equation with b as the base. " k " is zero for the least significant bit and increases by 1 until it reaches the most significant bit.
$n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots .+a_{1} b+a_{0}$
$n=1^{*} b^{7}+1^{*} b^{6}+0^{*} b^{5}+0^{*} b^{4}+1^{*} b^{3}+1^{*} b^{2}+1^{*} b+1$
$n=128+64+0+0+8+4+2+1$
$N=207$

Review: Converting to Binary (Unsigned)

Given a decimal value, we can convert it to binary by repeatedly performing integer division with 2 as the denominator. At each step we keep the remainder of that division operator. We divide until the quotient is 0 . Integer division can be represented with the following formula; where n is the decimal value, b is the desired base (2), q is the quotient and a is the remainder.

$$
\mathrm{n}=\mathrm{bq}_{0}+\mathrm{a}_{0}
$$

Example: Converting to Binary (Unsigned)

Given:

Convert (55) ${ }_{10}$ to binary.

Partial Credit 1:

Use the division formula to divide 55 by 2 using integer division. Take the quotient and divide it by 2 using integer division. Continue to divide the quotient by 2 until it becomes 0 . The remainders will from the binary expansion: the first remainder is the least significant bit and the final remainder is the most significant bit.
$55=2 * 27+1<-$ the remainder here is the least significant bit
$27=2 * 13+1$
$13=2 * 6+1$
Solution 1:
$6=2 * 3+0$
$3=2 * 1+1$
$1=2^{*} 0+1<-$ continue until the quotient becomes 0 , the remainder here is the most significant bit
$(55)_{10}=(110111)_{2}$

Example: Converting to Binary (Unsigned)

Given:
Convert (55) ${ }_{10}$ to binary. Show your answer using 8 bits.

Partial Some questions will ask you to show your answer using a certain number of bits. When values are unsigned, you can Credit 1: pad your result with leading zeroes that do not affect the value. We calculated the value of 55 on the previous slide.

Solution 1: $\quad(55)_{10}=(00110111)_{2}$

Given: Convert (55) $)_{10}$ to binary. Show your answer using 16 bits.

Partial When values are unsigned, you can pad your result with leading zeroes that do not affect the value Regardless of the Credit 1: number of zeroes in front, the value of 55 remains the same.

Solution 1: $(55)_{10}=(0000000000110111)_{2}$

Review: Signed Representations

To represent negative numbers we dedicate one of our bits to be the sign bit.
The sign bit is the most significant bit (MSB)

- 1 represents a negative number
- O represents a positive number

Signed binary number can still be positive and zero. Now they can also be negative.

Review: Sign-Magnitude

In the Sign-Magnitude representation, the first bit represents the sign and the rest is the magnitude (also known as the absolute value or distance from zero).

Example: Converting from Binary (Sign-Magnitude)

Given:
Let $A=(11001111) 2$. What decimal value does this represent if A is represented with the SignMagnitude representation?

Place all of the bits of A except the most significant into the conversion equation with b as the base.
Partial Credit 1: " k " is zero for the least significant bit and increases by 1 until it reaches the most significant bit. If the MSB is 0 , there is no need to modify the result. If the MSB is 1 , multiply the result by -1 .

Solution 1: $\quad n=a_{k-1} b^{k-1}+\ldots .+a_{1} b+a_{0}$
$n=1^{*} b^{6}+0^{*} b^{5}+0^{*} b^{4}+1^{*} b^{3}+1^{*} b^{2}+1^{*} b+1$
$n=64+0+0+8+4+2+1$
$n=79$
$n=-79$
<- calculate the magnitude
<- since the MSB is 1 , multiply the magnitude by -1

Example: Converting to Binary (Sign-Magnitude)

Given:

Convert (49) ${ }_{10}$ to binary using the sign-magnitude representation of signed integers. Show your answer using 8 bits.

Convert 49 to binary and expand to 8 bits. Since this number is positive, ensure the MSB is 0 .
$49=2 * 24+1$
$24=2 * 12+0$
Solution 1:
$12=2 * 6+0$
$6=2 * 3+0$
$3=2 * 1+1$
$1=2 * 0+1$
$(49)_{10}=(110001)_{2}=(00110001)_{2}$

Example: Converting to Binary (Sign-Magnitude)

Given

Convert (-55) in to binary using the sign-magnitude representation of signed integers. Show your answer using 8 bits.

Partial

Credit 1: First, calculate the magnitude of -55 .

$$
\begin{aligned}
& 55=2 * 27+1 \\
& 27=2 * 13+1 \\
& \text { Solution 1: } \\
& 13=2 * 6+1 \\
& 6=2 * 3+0 \\
& 3=2 * 1+1 \\
& 1=2 * 0+1 \\
& (55)_{10}=(110111)_{2}
\end{aligned}
$$

Example: Converting to Binary (Sign-Magnitude)

Given: Convert (-55) ${ }_{10}$ to binary using the sign-magnitude representation of signed integers. Show your answer using 8 bits.

Partial

Credit 2:
Second, expand the magnitude of -55 to 8 bits.
$(55)_{10}=(110111)_{2}$
Solution 2: $\quad(55)_{10}=(00110111)_{2}$

Partial
Credit 3: Finally, since the original value is negative, set the sign bit to 1.

Solution 3: $\quad(-55)_{10}=(10110111)_{2}$

Review: 1's Complement

In the 1's Complement representation every negative number is the bitwise inverse of it's positive counterpart. The first bit is the sign bit and indicates whether the number is positive or negative. A 1 means the number is negative - perform a bitwise inverse to see the magnitude of the number. A 0 in the most significant position means the number is positive or zero. No modifications need to be made.

Example: Converting from Binary (1's Complement)

Given: Let $A=(01001111) 2$. What decimal value does this represent if A is represented with the 1 's Complement representation?

Partial Cxamine the most significant bit. Since it is 0 , this number is positive. Place the bits into the Credit 1: conversion equation with b as the base. " k " is zero for the least significant bit and increases by 1 until it reaches the most significant bit. Since the MSB is 0 there is no need to modify the result.

Solution 1:

$$
\begin{array}{lr}
n=a_{k-1} b^{k-1}+\ldots .+a_{1} b+a_{0} & \text { <- the most significa } \\
n=1 * b^{6}+0^{*} b^{5}+0^{*} b^{4}+1 * b^{3}+1 * b^{2}+1^{*} b+1 & \\
n=64+0+0+8+4+2+1 & \text { <- calculate the value } \\
n=79 &
\end{array}
$$

Example: Converting from Binary (1's Complement)

Given:

Partial Credit 1:

Partial Credit 2:

Let $\mathrm{A}=(11001111) 2$. What decimal value does this represent if A is represented with the 1 's Complement representation?

Examine the most significant bit. Since it is 1, this number is negative. Perform a bitwise inverse.

00110000

Place the inverted bits into the conversion equation with b as the base. " k " is zero for the least significant bit and increases by 1 until it reaches the most significant bit. Since the original MSB was 1 , multiply the result by -1 .

$$
\begin{aligned}
& n=a_{k-1} b^{k-1}+\ldots .+a_{1} b+a_{0} \\
& n=0^{*} b^{7}+0^{*} b^{6}+1^{*} b^{5}+1^{*} b^{4}+0^{*} b^{3}+0^{*} b^{2}+0 * b+0
\end{aligned}
$$

$$
n=32+16+0+0+0+0
$$

$$
n=48
$$

<- calculate the result
$n=-48$
<- since the original MSB was 1, multiply the result by -1

Example: Converting to Binary (1's Complement)

Given:

Convert (49) $)_{10}$ to binary using the 1's complement representation of signed integers. Show your answer using 8 bits.

Partial

 Credit 1:Convert 49 to binary and expand to 8 bits. Since this number is positive, no modifications are needed.

```
49 = 2*24 + 1
24=2*12+0
12 =2*6 +0
6 = 2*3 +0
3 = 2*1 +1
1 = 2*0 +1
(49) 10 = (110001) )}=(0011 0001) 2,
```

Solution 1:

Example: Converting to Binary (1's Complement)

Given:

Convert (-55) ${ }_{18}$ to binary using the 1's complement representation of signed integers. Show your answer using 8 bits.

Partial

Credit 1: First, calculate the positive form of -55

$$
\begin{aligned}
& 55=2 * 27+1 \\
& 27=2 * 13+1 \\
& \text { Solution 1: } \\
& 13=2 * 6+1 \\
& 6=2 * 3+0 \\
& 3=2 * 1+1 \\
& 1=2 * 0+1 \\
& \\
& (55)_{10}=(110111)_{2}
\end{aligned}
$$

Example: Converting to Binary (1's Complement)

Given: Convert (-55$)_{10}$ to binary using the 1's complement representation of signed integers. Show your answer using 8 bits.

Partial Credit 2: Second, expand the positive form of -55 to 8 bits.
$(55)_{10}=(110111)_{2}$
Solution 2: $\quad(55)_{10}=(00110111)_{2}$

Partial
Credit 3 : Finally, since the original value is negative, perform a bitwise inverse.

Solution 3: $\quad(-55)_{10}=(11001000)_{2}$

Review: 2's Complement

2's Complement is the standard representation for signed integers. To convert between positive and negative values, we calculate a bitwise inverse and add 1 to the result. The first bit is the sign bit and indicates whether the number is positive or negative. A 1 means the number is negative. A 0 in the most significant position means the number is positive or zero.

Example: Converting from Binary (2's Complement)

Given: Let $A=(01001111) 2$. What decimal value does this represent if A is represented with the 2 's Complement representation?

Partial . Examine the most significant bit. Since it is 0 , this number is positive. Place the bits into the Credit 1: conversion equation with b as the base. " k " is zero for the least significant bit and increases by 1 until it reaches the most significant bit. Since the MSB is 0 there is no need to modify the result.

Solution 1:
$n=a_{k-1} b^{k-1}+\ldots .+a_{1} b+a_{0}$
<- the most significant bit (MSB) is zero
$n=1^{*} b^{6}+0^{*} b^{5}+0^{*} b^{4}+1 * b^{3}+1^{*} b^{2}+1 * b+1$
$n=64+0+0+8+4+2+1$
$n=79$
<- calculate the value

Example: Converting from Binary (2's Complement)

Given:

Partial Credit 1:

Solution 1: 00110001

Partial Place the modified bits into the conversion equation with b as the base. " k " is zero for the least significant bit and increases by 1 until it Credit 2:

Let $\mathrm{A}=(11001111) 2$. What decimal value does this represent if A is represented with the 2's Complement representation?

Examine the most significant bit. Since it is 1 , this number is negative. Perform a bitwise inverse and add 1. reaches the most significant bit. Since the original MSB was 1 , multiply the result by -1 .

$$
\begin{aligned}
& n=a_{k-1} b^{k-1}+\ldots .+a_{1} b+a_{0} \\
& n=0^{*} b^{7}+0^{*} b^{6}+1^{*} b^{5}+1^{*} b^{4}+0^{*} b^{3}+0^{*} b^{2}+0^{*} b+1
\end{aligned}
$$

$$
n=32+16+0+0+0+1
$$

$$
n=49
$$

<- calculate the result
$n=-49$
<- since the original MSB was 1, multiply the result by -1

Example: Converting to Binary (2's Complement)

Convert (49) $)_{10}$ to binary using the 2's complement representation of signed integers. Show your answer using 8 bits.

Partial

 Credit 1:Convert 49 to binary and expand to 8 bits. Since this number is positive, no modifications are needed.

```
49 = 2*24 + 1
24=2*12+0
12=2*6 +0
6 = 2*3 +0
3 = 2*1 +1
1 = 2*0 +1
(49) 10 = (110001) )}=(0011 0001) 2,
```

Solution 1:

Example: Converting to Binary (2's Complement)

Convert (-55) 10 to binary using the 2's complement representation of signed integers. Show your answer using 8 bits.

Partial

Credit 1: First, calculate the positive form of -55

$$
\begin{aligned}
& 55=2 * 27+1 \\
& 27=2 * 13+1
\end{aligned}
$$

Solution 1:
$13=2 * 6+1$
$6=2 * 3+0$
$3=2 * 1+1$
$1=2 * 0+1$
$(55)_{10}=(110111)_{2}$

Example: Converting to Binary (2's Complement)

Given: Convert (-55) ${ }_{10}$ to binary using the 2's complement representation of signed integers. Show your answer using 8 bits.

Partial Credit 2: Second, expand the positive form of -55 to 8 bits.
$(55)_{10}=(110111)_{2}$
Solution 2: $\quad(55)_{10}=(00110111)_{2}$

Partial
Credit 3: \quad Finally, since the original value is negative, perform a bitwise inverse and add 1.

Solution 3: $(-55)_{10}=(11001001)_{2}$

