
CDA 3103: Study Set 5
BASIC ASSEMBLY, TYPES OF INSTRUCTIONS, MEMORY FORMAT,
NAVIGATING JUMPS AND BRANCHES, CODE CONVERSION

Review: Basic Assembly
When a higher level programming language is compiled it is converted first into an assembly
language. It is then further processed into machine code which can then be run on a processor.

The “instructions” are the individual commands that a computer can understand. The
“instruction set” is the collection of all of the commands. The “instruction set architecture” is
the processor that is capable of running a particular instruction set.

MIPS is an instruction set architecture. It has a processor and an instruction set. Most
arithmetic instructions are formed from an operation, a destination, and two source operands.

add $t0, $t1, $t2

For example, the above add operation will add the contents of registers t1 and t2 together and
place the result into the t0 register.

Review: Basic Assembly
These are called “R-Type Instructions”. Most R-Type instructions have the same format:

<operation> <destination register>, <source register1>, <source register2>

Here are some examples:

add add $t1,$t2,$t3 $t1 = $t2 + $t3
subtract sub $t1,$t2,$t3 $t1 = $t2 – $t3
set less than slt $t1,$t2,$t3 $t1 = ($t2 < $t3)
and and $t1,$t2,$t3 $t1 = $t2 & $t3
or or $t1,$t2,$t3 $t1 = $t2 | $t3

There are also unsigned versions of several of these operations.

Review: Basic Assembly
There are some exceptions to the usual R-Type format. These are some of the special R-Type
instructions:

shift left logical sll $t1,$t2,10 $t1 = $t2 << 10
shift right logical srl $t1,$t2,10 $t1 = $t2 >> 10

In these cases we specify the number of bits we want a single operand to be shifted.

Review: Basic Assembly
Integer multiplication and division are also R-Type instructions with some unique notes. Recall
that our result register in these cases is twice the size of our input registers. We create this
double register by combining two regular sized registers called Hi and Lo.

Hi is the upper portion of the product or remainder register and Lo is the lower portion of the
product or remainder register.

multiply mult $t1, $t2 HiLo = $t1 * $t2
divide div $t1, $t2 Lo = $t1 / $t2 Hi = $t1 % $t2

If we want to store these results in our register file, we need to move them from Hi or Lo to a
register in the register file:

Move from Hi mfhi $t1 $t1 = Hi
Move from Lo mflo $t1 $t1 = Lo

Example: Basic Assembly
Consider the following line of C code:

a = (b+c) – (b-d) + (c/d)

where integers {a, b, c, d} reside in {$s1,$s2,$s3,$s4} respectively. Complete the corresponding
assembly language fragment by writing in the correct instruction or register:

______ $t0, $s2, $s3
sub $t1, ______, $s4
div $s3, ______
______ $t2
sub $t0, $t0, ______
add $s1, ______, $t2

Given:

Example: Basic Assembly
Consider the following line of C code:
a = (b+c) – (b-d) + (c/d)

where integers {a, b, c, d} reside in {$s1,$s2,$s3,$s4} respectively. Complete the corresponding
assembly language fragment by writing in the correct instruction or register:

The compiler has to break down each line of C
into the most basic steps. Our arithmetic operations
can only have two operands, so we will need to
calculate the values in parentheses separately. We
can store these temporary quantities in our
temporary registers.

The first step is to add b and
c together. We store this in $t0. So our first
instruction is add.

Given:

Partial
Credit 1:

Solution 1:

add $t0, $s2, $s3
sub $t1, ______, $s4
div $s3, ______
______ $t2
sub $t0, $t0, ______
add $s1, ______, $t2

Example: Basic Assembly
Consider the following line of C code:
a = (b+c) – (b-d) + (c/d)

where integers {a, b, c, d} reside in {$s1,$s2,$s3,$s4} respectively. Complete the corresponding
assembly language fragment by writing in the correct instruction or register:

Another temporary quantity is b-d. In a
subtraction operation, the order is important.

The second line is a subtraction, so we can use
this to calculate b-d. We need to subtract d from b,
so b should be the first operand and d should be the
second. D’s register and the destination are already
filled in: we just need to add in B’s register.

Given:

Partial
Credit 2:

Solution 2:

add $t0, $s2, $s3
sub $t1, __$s2__, $s4
div $s3, ______
______ $t2
sub $t0, $t0, ______
add $s1, ______, $t2

Example: Basic Assembly
Consider the following line of C code:
a = (b+c) – (b-d) + (c/d)

where integers {a, b, c, d} reside in {$s1,$s2,$s3,$s4} respectively. Complete the corresponding
assembly language fragment by writing in the correct instruction or register:

Our third and final temporary quantity is c/d.
Remember that division instructions look a bit
different from other arithmetic instructions
because the destination is pre-determined.

The destination will be the Hi and Lo registers for
division, so we only need to specify the input
operands. Like subtraction, order is important. To
divide c by d, we list c’s register first, then d’s.

Given:

Partial
Credit 3:

Solution 3:

add $t0, $s2, $s3
sub $t1, __$s2__, $s4
div $s3, __$s4__
______ $t2
sub $t0, $t0, ______
add $s1, ______, $t2

Example: Basic Assembly
Consider the following line of C code:
a = (b+c) – (b-d) + (c/d)

where integers {a, b, c, d} reside in {$s1,$s2,$s3,$s4} respectively. Complete the corresponding
assembly language fragment by writing in the correct instruction or register:

In order to use the result of our division operation
we need to move it to a more accessible location.
We have two move operations. Which is needed here?

In the division algorithm, the upper portion of the
result register holds the remainder and the lower
portion of the result register holds the quotient.
Therefore, we need to move from Lo to a different
register.

Given:

Partial
Credit 4:

Solution 4:

add $t0, $s2, $s3
sub $t1, __$s2__, $s4
div $s3, __$s4__
mflo $t2
sub $t0, $t0, ______
add $s1, ______, $t2

Example: Basic Assembly
Consider the following line of C code:
a = (b+c) – (b-d) + (c/d)

where integers {a, b, c, d} reside in {$s1,$s2,$s3,$s4} respectively. Complete the corresponding
assembly language fragment by writing in the correct instruction or register:

Now we can start constructing a. We have
$t0 holding b+c, $t1 holding b-d, and $t2
holding c/d. In C these would be combined
left to right with $t0-$t1 happening first.

To calculate $t0-$t1 we will do a subtraction
operation with $t0 as the first operand and $t1 as
the second. We can store the result back in $t0 as
we no longer need its previous value.

Given:

Partial
Credit 5:

Solution 5:

add $t0, $s2, $s3
sub $t1, __$s2__, $s4
div $s3, __$s4__
mflo $t2
sub $t0, $t0, __$t1__
add $s1, ______, $t2

Example: Basic Assembly
Consider the following line of C code:

a = (b+c) – (b-d) + (c/d)

where integers {a, b, c, d} reside in {$s1,$s2,$s3,$s4} respectively. Complete the corresponding
assembly language fragment by writing in the correct instruction or register:

Now we have $t0 = (b+c) – (b-d) and
we just need to add in the quantity
(c/d) which is stored in $t2.

This final operation is an add, where we want
the result to end up in a’s register. To add in the
remaining temporary quantity, we add $t2 to $t0.

Given:

Partial
Credit 6:

Solution 6:

add $t0, $s2, $s3
sub $t1, __$s2__, $s4
div $s3, __$s4__
mflo $t2
sub $t0, $t0, __$t1__
add $s1, __$t0__, $t2

Review: Types of Instructions
Each instruction type has a unique format. All instructions take 32 bits to specify. R-Type
instructions have 6 fields:

The op field is also known as the Opcode or the Operation Code. All R-Type instructions have an
Opcode of 000000.

Rs and Rt are the two source registers. Rd is the destination register.

Shamt is the shift amount which is only used in shift operations. For other R-types this field
would be set to 0.

The funct field is known as Function. This specifies which R-Type instruction we are performing.

Review: Types of Instructions
Another type of instruction in MIPS is the I-Type. It has the following format:

The op field is also known as the Opcode or the Operation Code. Each I-Type instruction has a
unique Opcode.

Rs is a source register. Rt may be a source or a destination register depending on the instruction

The remaining 16 bits are used as a constant either for arithmetic or addressing. For arithmetic
I-Types this constant represents a numerical value that will participate in our operation.

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Review: Types of Instructions
Here are some of the more common arithmetic I-Type instructions:

add immediate addi $1,$2,100 $1 = $2 + 100
and immediate andi $1,$2,10 $1 = $2 & 10
or immediate ori $1,$2,10 $1 = $2 | 10
set less than imm slti $1,$2,100 $1 = ($2 < 100)

Example: Arithmetic I-Types
Consider the following line of C code:

a = (b+c+d) – (e+5)

where integers {a, b, c, d, e} reside in {$s1,$s2,$s3,$s4, $s5} respectively. What is the smallest
number of instructions we can use to complete the same task in MIPS?

Given:

Example: Arithmetic I-Types
Consider the following line of C code:
a = (b+c+d) – (e+5)

where integers {a, b, c, d, e} reside in {$s1,$s2,$s3,$s4, $s5} respectively. What is the smallest
number of instructions we can use to complete the same task in MIPS?

To determine the required number of instructions we need to convert the C code to MIPS while trying
to use as few assembly instructions as possible. There are two quantities in parentheses that we will
need to calculate first. Let’s start with (e+5).

addi $t0, $s5, 5 #to add 5 to e, we need to use addi, the add instruction that allows us
#to add a constant value to a register. Since we do not want to change

#the variable e, we need to store the result in a temporary register.

Given:

Partial
Credit 1:

Solution 1:

Example: Arithmetic I-Types
Consider the following line of C code:

a = (b+c+d) – (e+5)

where integers {a, b, c, d, e} reside in {$s1,$s2,$s3,$s4, $s5} respectively. What is the smallest
number of instructions we can use to complete the same task in MIPS?

Now we need to calculate the second quantity (b+c+d). With using r-type instructions we can
add two variables at a time. The fewest instructions we can use to calculate this quantity is two.

add $t1, $s2, $s3 #first we add b and c together and store that in a temporary register
add $t1, $t1, $s4 #then we add to the temporary register the value in d

Given:

Partial
Credit 2:

Solution 2:

Example: Arithmetic I-Types
Consider the following line of C code:

a = (b+c+d) – (e+5)

where integers {a, b, c, d, e} reside in {$s1,$s2,$s3,$s4, $s5} respectively. What is the smallest
number of instructions we can use to complete the same task is MIPS?

Now that we have both quantities, we can perform the subtraction to calculate A.

sub $s1, $t1, $t0 #subtract the value in $t0 from the value in $t1 to get A

Given:

Partial
Credit 3:

Solution 3:

Example: Arithmetic I-Types
Consider the following line of C code:
a = (b+c+d) – (e+5)

where integers {a, b, c, d, e} reside in {$s1,$s2,$s3,$s4, $s5} respectively. What is the smallest
number of instructions we can use to complete the same task in MIPS?

Now that we have converted the C code segment we can count the number of instructions used.

addi $t0, $s5, 5
add $t1, $s2, $s3
add $t1, $t1, $s4
sub $s1, $t1, $t0
The smallest number of instructions we can use to complete the same task in MIPS is 4.

Given:

Partial
Credit 4:

Solution 4:

Review: Memory Format
Memory may be viewed as an array of bytes. Each index of the array refers to a single byte in
memory, which is 8 bits. We say that memory is byte addressed.

In order to access a full word (4 bytes) we need our data in memory to be word aligned. This
means the first byte of the word needs to be in an address that is evenly divisible by 4.

To place a value in memory or retrieve a value from memory, we need to specify the length of
that value and the byte that it starts with. Lengths can be a single byte, a half word, or a word.

This diagram shows an array of words in memory. Each word begins at
an address (index) that is evenly divisible by four. The four bytes that
make up the content “101” are stored in memory locations 4, 5, 6, and 7.

Review: Memory Format
To take a value from memory and place it in the register file, we use one of the load operations:

load word lw $1, 8($2) $1=Mem[8+$2]
load halfword lh $1, 6($3) $1=Mem[6+$3]
load byte lb $1, 5($3) $1=Mem[5+$3]

The type of instruction specifies the length of the value we are loading. To specify the starting
byte we construct an address from the source register and the 16-bit constant.

Review: Memory Format
To take a from the register file and place it in memory, we use one of the store operations:

store word sw $3, 8($4) Mem[$4+8]=$3
store halfword sh $3, 6($2) Mem[$2+6]=$3
store byte sb $2, 7($3) Mem[$3+7]=$3

The type of instruction specifies the length of the value we are storing. To specify the starting
byte we construct an address from the source register and the 16-bit constant.

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[2] = b + 400

where A is an array of words and the base address of A is stored in $s0. Integer {b} resides
in {$s1}. Complete the corresponding assembly language fragment by writing in the correct
instruction, register, or numerical value:

______ $t0, ______, 400
______ $t0, 8(______)

Given:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[2] = b + 400

where A is an array of words and the base address of A is stored in $s0. Integer {b} resides
in {$s1}. Complete the corresponding assembly language fragment by writing in the correct
instruction, register, or numerical value:

There are two different tasks we need to accomplish. The first
is calculating the quantity on the right side of the equal sign.
Which instruction will let us add a constant?

Add immediate, written addi, allows us to add a constant to a
value in a register.

Given:

addi $t0, ______, 400
______ $t0, 8(______)

Partial
Credit 1:

Solution 1:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[2] = b + 400

where A is an array of words and the base address of A is stored in $s0. Integer {b} resides
in {$s1}. Complete the corresponding assembly language fragment by writing in the correct
instruction, register, or numerical value:

There are two different tasks we need to accomplish. The first
is calculating the quantity on the right side of the equal sign.
To which register should we add 400?

On the right side of the equal sign, we are adding b and 400.
Since b is stored in register $s1, that is what we need to add 400 to.

Given:

addi $t0, __$s1__, 400
______ $t0, 8(______)

Partial
Credit 2:

Solution 2:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[2] = b + 400

where A is an array of words and the base address of A is stored in $s0. Integer {b} resides
in {$s1}. Complete the corresponding assembly language fragment by writing in the correct
instruction, register, or numerical value:

There are two different tasks we need to accomplish. The second
task is to place our calculated value in the array at the correct index.
Which instruction places a value in memory?

To place an integer value in memory from the register file, we use
“store word”

Given:

addi $t0, __$s1__, 400
__sw__ $t0, 8(______)

Partial
Credit 3:

Solution 3:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[2] = b + 400

where A is an array of words and the base address of A is stored in $s0. Integer {b} resides
in {$s1}. Complete the corresponding assembly language fragment by writing in the correct
instruction, register, or numerical value:

There are two different tasks we need to accomplish. The second
task is to place our calculated value in the array at the correct index.
How do we calculate the correct address in memory for index 2?

The array begins at the base address, which is stored in $s0. To
get to index 2, we need to advance 2 words or 8 bytes. To calculate
this address, we add 8 bytes to the base.

Given:

addi $t0, __$s1__, 400
__sw__ $t0, 8(__$s0__)

Partial
Credit 4:

Solution 4:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B + 400

where A is an array of words and the base address of A is stored in $s0. Integers {b, i} reside
in {$s1, $s2} respectively. Complete the corresponding assembly language fragment by writing in
the correct instruction, register, or numerical value:

addi ______, $s1, ______
sll $t1, $s2, ______
______ $t1, ______, $t1
sw $t0, ______($t1)

Given:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B + 400

where A is an array of words and the base address of A is stored in $s0. Integers {b, i} reside
in {$s1, $s2} respectively. Complete the corresponding assembly language fragment by writing in
the correct instruction, register, or numerical value:

There are two blanks in the first instruction. Since the
instruction is addi, we should infer that the second
blank needs to be a number instead of a register. The
only number being added is 400 and we are adding this to B,
which is stored in register $s1 and $s1 is the other source
for this instruction.

Given:

addi ______, $s1, _400_
sll $t1, $s2, ______
______ $t1, ______, $t1
sw $t0, ______($t1)

Partial
Credit 1:

Solution 1:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B + 400

where A is an array of words and the base address of A is stored in $s0. Integers {b, i} reside
in {$s1, $s2} respectively. Complete the corresponding assembly language fragment by writing in
the correct instruction, register, or numerical value:

There are two blanks in the first instruction. The second
blank is for the destination register. This value should be
placed in memory, so we can determine which register
should be used by looking at the later sw instruction.

Given:

addi __$t0__, $s1, _400_
sll $t1, $s2, ______
______ $t1, ______, $t1
sw $t0, ______($t1)

Partial
Credit 2:

Solution 2:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:
A[i] = B + 400

where A is an array of words and the base address of A is stored in $s0. Integers {b, i} reside in {$s1,
$s2} respectively. Complete the corresponding assembly language fragment by writing in the correct
instruction, register, or numerical value:

The second instruction is sll. Recall that this is
“Shift Left Logical”. What would we need to shift?
The register being shifted is $s2, which is i.
To determine a memory location based on A[i], we
need to calculate the address that is “i” words
beyond the base address of A. Since memory is byte
addressed, this will need to be i*4 bytes beyond the
base address of A. Instead of multiplying by 4, we should
shift left by 2 because it will be faster.

Given:

addi __$t0__, $s1, _400_
sll $t1, $s2, __2__
______ $t1, ______, $t1
sw $t0, ______($t1)

Partial
Credit 3:

Solution 3:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B + 400

where A is an array of words and the base address of A is stored in $s0. Integers {b, i} reside
in {$s1, $s2} respectively. Complete the corresponding assembly language fragment by writing in
the correct instruction, register, or numerical value:

To determine a memory location based on A[i], we
need to calculate the address that is “i” words
beyond the base address of A.

Now that we have i*4, we can add that to the base
address of A to calculate our memory location. Both
i*4 and the base address of A are stored in registers,
so we will need to use the R-Type instruction add.

Given:

addi __$t0__, $s1, _400_
sll $t1, $s2, __2__
__add__ $t1, ______, $t1
sw $t0, ______($t1)

Partial
Credit 4:

Solution 4:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B + 400

where A is an array of words and the base address of A is stored in $s0. Integers {b, i} reside
in {$s1, $s2} respectively. Complete the corresponding assembly language fragment by writing in
the correct instruction, register, or numerical value:

To determine a memory location based on A[i], we
need to calculate the address that is “i” words
beyond the base address of A.

Now that we have i*4, we can add that to the base
address of A to calculate our memory location. Both
i*4 and the base address of A are stored in registers.
The base address of A is stored in $s0.

Given:

addi __$t0__, $s1, _400_
sll $t1, $s2, __2__
__add__ $t1, __$s0__, $t1
sw $t0, ______($t1)

Partial
Credit 5:

Solution 5:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B + 400

where A is an array of words and the base address of A is stored in $s0. Integers {b, i} reside
in {$s1, $s2} respectively. Complete the corresponding assembly language fragment by writing in
the correct instruction, register, or numerical value:

Now that we have the full address of A[i] stored
in register $t1, we can place the value of B+400
in memory at that location. We use the instruction
store word to do this. What should the offset be?

Since we have calculated the explicit address, there is
no additional offset.

Given:

addi __$t0__, $s1, _400_
sll $t1, $s2, __2__
__add__ $t1, __$s0__, $t1
sw $t0, __0__($t1)

Partial
Credit 6:

Solution 6:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B[i] + 400

where both A and B are arrays of words whose base addresses are stored in $s0 and $s1
respectively. Integer i is stored in register $s2. Complete the corresponding assembly language
fragment by writing in the correct instruction, register, or numerical value:

sll $t0, ______, 2
______ $t1, $s1, $t0
______ $t1, 0($t1)
addi $t2, ______, 400
add $t1, $s0, ______
______ $t2, 0($t1)

Given:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B[i] + 400

where both A and B are arrays of words whose base addresses are stored in $s0 and $s1
respectively. Integer i is stored in register $s2. Complete the corresponding assembly language
fragment by writing in the correct instruction, register, or numerical value:

In this problem, there are two different memory access
instructions. We need to first load the value that is stored
at B[i] into a register in order to add 400 to it. Then we
can place the result into memory at A[i].

The first instruction is a shift left logical. What variable
would we need to shift? To calculate memory addresses
we will need to go “i” words or i*4 bytes beyond our
base addresses. To calculate i*4, we shift i left twice.

Given:

sll $t0, __$s2__, 2
______ $t1, $s1, $t0
______ $t1, 0($t1)
addi $t2, ______, 400
add $t1, $s0, ______
______ $t2, 0($t1)

Partial
Credit 1:

Solution 1:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B[i] + 400

where both A and B are arrays of words whose base addresses are stored in $s0 and $s1
respectively. Integer i is stored in register $s2. Complete the corresponding assembly language
fragment by writing in the correct instruction, register, or numerical value:

To finish calculating the memory address for B[i], we
add i*4 to the base address of B, using an add instruction.

Given:

sll $t0, __$s2__, 2
__add__ $t1, $s1, $t0
______ $t1, 0($t1)
addi $t2, ______, 400
add $t1, $s0, ______
______ $t2, 0($t1)

Partial
Credit 2:

Solution 2:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B[i] + 400

where both A and B are arrays of words whose base addresses are stored in $s0 and $s1
respectively. Integer i is stored in register $s2. Complete the corresponding assembly language
fragment by writing in the correct instruction, register, or numerical value:

Now that we have the address for B[i], we can retrieve it’s
value and place into a temporary register. We use load
word to take an integer out of memory and place it in a
register.

The offset is 0 because we have already calculated the
explicit address of B[i].

Given:

sll $t0, __$s2__, 2
__add__ $t1, $s1, $t0
__lw__ $t1, 0($t1)
addi $t2, ______, 400
add $t1, $s0, ______
______ $t2, 0($t1)

Partial
Credit 3:

Solution 3:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B[i] + 400

where both A and B are arrays of words whose base addresses are stored in $s0 and $s1
respectively. Integer i is stored in register $s2. Complete the corresponding assembly language
fragment by writing in the correct instruction, register, or numerical value:

Now we can add 400 to the value at B[i]. Since we
stored that value in register $t1, we want to add
400 to register $t1.

Given:

sll $t0, __$s2__, 2
__add__ $t1, $s1, $t0
__lw__ $t1, 0($t1)
addi $t2, __$t1__, 400
add $t1, $s0, ______
______ $t2, 0($t1)

Partial
Credit 4:

Solution 4:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B[i] + 400

where both A and B are arrays of words whose base addresses are stored in $s0 and $s1
respectively. Integer i is stored in register $s2. Complete the corresponding assembly language
fragment by writing in the correct instruction, register, or numerical value:

To store the result of B[i] + 400, we need to calculate the
memory location of A[i]. We have already calculated and
preserved the value of i*4 in register $t0, so we can add
this to the base address of A stored in $s0.

Given:

sll $t0, __$s2__, 2
__add__ $t1, $s1, $t0
__lw__ $t1, 0($t1)
addi $t2, __$t1__, 400
add $t1, $s0, __$t0__
______ $t2, 0($t1)

Partial
Credit 5:

Solution 5:

Example: Arrays, Loading, and Storing
Consider the following segment of C code:

A[i] = B[i] + 400

where both A and B are arrays of words whose base addresses are stored in $s0 and $s1
respectively. Integer i is stored in register $s2. Complete the corresponding assembly language
fragment by writing in the correct instruction, register, or numerical value:

Finally, we can stored B[i] + 400 into A[i]. The value of
B[i] + 400 is stored in $t2. The address of A[i] is stored
in $t1. We use sw to store the contents of $t2 into the
memory location in $t1.

Given:

sll $t0, __$s2__, 2
__add__ $t1, $s1, $t0
__lw__ $t1, 0($t1)
addi $t2, __$t1__, 400
add $t1, $s0, __$t0__
__sw__ $t2, 0($t1)

Partial
Credit 6:

Solution 6:

Review: Jumps and Branches
Jumps and branches allow to leave our current location in instruction memory and go to a
different location. A branch is a conditional jump:

Branch if equal beq $s1, $s2, L if (s1 == s2), go to L
Branch if not equal bne $s1, $s2, L if (s1 != s2), go to L

A jump is unconditional:

jump j 10000 PC = PC:40000

Review: Jumps and Branches
Branches are I-Type instructions, with the same I-Type format as previous I-Type instructions:

The op field is also known as the Opcode or the Operation Code. Each I-Type instruction has a
unique Opcode.

Rs and RT are both source registers. We will compare the data in these two registers to
determine if they are the same (branch if equal) or different (branch if not equal).

The remaining 16 bits are used to calculate a “branch target address”. If the condition is met this
value will be added to the new program counter as the next instruction address.

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Review: Jumps and Branches
Jumps are J-Type instructions. They have the following format:

The op field is also known as the Opcode or the Operation Code. Each J-Type instruction has a
unique Opcode.

The remaining 26 bits are used to calculate a “pseudo-direct address”. This 28 bit address is
concatenated with the first 4 bits of the current program counter to calculate the next
instruction address.

op address
6 bits 26 bits

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

addi $t1, $zero, 1
addi $t2, $zero, 2
addi $t3, $zero, 2

L1: beq $t2, $zero, L2
sub $t2, $t2, $t1,
add $t3, $t3, $t3
j L1

L2:

Given:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

To determine the value store in the register, we need to track
the values for all three temporary registers being used in the
fragment of code. Registers $t1, $t2, and $t3 are given initial
values in the first three lines.

$t1 = 1 + 0 = 1
$t2 = 2 + 0 = 2
$t3 = 2 + 0 = 2

Given:

Partial
Credit 1:

Solution 1:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

In line 4 we have a beq instruction. This instruction is branch
if equal. We need to check the two register parameters and
see if they are equal to each other. If they are we will jump
to L2.

$t1 = 1
$t2 = 2
$t3 = 2

Since $t2 is equal to 2 and not 0, we will not jump but instead continue to line 5

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 2:

Solution 2:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

In line 5 we subtract $t1 from $t2 and place the result back
into the $t2 register. This will change the value of $t2.

$t1 = 1
$t2 = 2 – 1 = 1
$t3 = 2

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 2:

Solution 2:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

In line 6 we add $t3 to itself and place the result back
into the $t3 register. This will change the value of $t3.

$t1 = 1
$t2 = 1
$t3 = 2 + 2 = 4

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 3:

Solution 3:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

Line 7 contains an unconditional jump back to L1 in line 4.

$t1 = 1
$t2 = 1
$t3 = 4

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 4:

Solution 4:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

In line 4 we have a beq instruction. This instruction is branch
if equal. We need to check the two register parameters and
see if they are equal to each other. If they are we will jump
to L2.

$t1 = 1
$t2 = 1
$t3 = 4

Since $t2 is equal to 1 and not 0, we will not jump but instead continue to line 5

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 4:

Solution 4:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

In line 5 we subtract $t1 from $t2 and place the result back
into the $t2 register. This will change the value of $t2.

$t1 = 1
$t2 = 1 - 1 = 0
$t3 = 4

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 4:

Solution 4:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

In line 6 we add $t3 to itself and place the result back
into the $t3 register. This will change the value of $t3.

$t1 = 1
$t2 = 0
$t3 = 4 + 4 = 8

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 5:

Solution 5:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

Line 7 contains an unconditional jump back to L1 in line 4.

$t1 = 1
$t2 = 0
$t3 = 8

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 5:

Solution 5:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

In line 4 we have a beq instruction. This instruction is branch
if equal. We need to check the two register parameters and
see if they are equal to each other. If they are we will jump
to L2.

$t1 = 1
$t2 = 0
$t3 = 8

Now that $t2 is equal to zero, we will jump to L2.

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 6:

Solution 6:

Example: Jumps and Branches
What value is contained in $t3 upon completion of the MIPS code below: __________

In line 8 there is no instruction, so we will end the
code segment.

$t1 = 1
$t2 = 0
$t3 = 8

The value contained $t3 is 8.

Given:

1 addi $t1, $zero, 1
2 addi $t2, $zero, 2
3 addi $t3, $zero, 2
4 L1: beq $t2, $zero, L2
5 sub $t2, $t2, $t1,
6 add $t3, $t3, $t3
7 j L1
8 L2:

Partial
Credit 6:

Solution 6:

Example: Jumps and Branches
Consider the following fragment of C code:

i=0;
while (i <= 20) {

A[i] = i;
i++;

}

Assume that A is an array of words and that
the base address of A is in $s0. Integer i resides
in $s1. Complete the corresponding assembly
language fragment by writing in the correct
instruction, register, or numerical value:

Given:

addi $s1, __________, __________
loop: __________ $t1, $s1, 21

__________ $t1, $zero, end
sll $t2, $s1, __________
add $t2, $t2, $s0
__________ $s1, 0($t2)
addi $s1, $s1, 1
j loop

end: …

Example: Jumps and Branches
Consider the following fragment of C code:

i=0;
while (i <= 20) {

A[i] = i;
i++;

}

Assume that A is an array of words and that
the base address of A is in $s0. Integer i resides
in $s1. Complete the corresponding assembly
language fragment by writing in the correct
instruction, register, or numerical value:

The first step in the C fragment is to initialize
i to zero. We can do this with an
add-immediate instruction by adding the constant
0 to the zero register.

Given:

addi $s1, __$zero__, __0__
loop: __________ $t1, $s1, 21

__________ $t1, $zero, end
sll $t2, $s1, __________
add $t2, $t2, $s0
__________ $s1, 0($t2)
addi $s1, $s1, 1
j loop

end: …
Partial

Credit 1:

Solution 1:

Example: Jumps and Branches
Consider the following fragment of C code:

i=0;
while (i <= 20) {

A[i] = i;
i++;

}

Assume that A is an array of words and that
the base address of A is in $s0. Integer i resides
in $s1. Complete the corresponding assembly
language fragment by writing in the correct
instruction, register, or numerical value:

To begin the while loop we need to verify that i is less than or equal to 20. Because i is an
integer, this is the same as check to see if i is less than 21. We use the instruction slti to set $t1
to 1 if i is less than 21. $t1 will be 0 otherwise.

Given:

addi $s1, __$zero__, __0__
loop: ___slti___ $t1, $s1, 21

__________ $t1, $zero, end
sll $t2, $s1, __________
add $t2, $t2, $s0
__________ $s1, 0($t2)
addi $s1, $s1, 1
j loop

end: …
Partial

Credit 2:

Solution 2:

Example: Jumps and Branches
Consider the following fragment of C code:

i=0;
while (i <= 20) {

A[i] = i;
i++;

}

Assume that A is an array of words and that
the base address of A is in $s0. Integer i resides
in $s1. Complete the corresponding assembly
language fragment by writing in the correct
instruction, register, or numerical value:

If i is less than 21, then $t1 will be equal to 1. If i is 21 or greater, $t1 will be equal to 0. If $t1 is
equal to 0, then the condition (i<=20) was not true and we should exit the loop. We will use
branch if equal to jump to the end of the loop if $t1 is 0.

Given:

addi $s1, __$zero__, __0__
loop: ___slti___ $t1, $s1, 21

___beq___ $t1, $zero, end
sll $t2, $s1, __________
add $t2, $t2, $s0
__________ $s1, 0($t2)
addi $s1, $s1, 1
j loop

end: …
Partial

Credit 3:

Solution 3:

Example: Jumps and Branches
Consider the following fragment of C code:

i=0;
while (i <= 20) {

A[i] = i;
i++;

}

Assume that A is an array of words and that
the base address of A is in $s0. Integer i resides
in $s1. Complete the corresponding assembly
language fragment by writing in the correct
instruction, register, or numerical value:

Within the loop, we need to set A[i] equal to i. To accomplish this we need to calculate the exact
address in memory of the ith index of A. This location is “i” words or i*4 bytes beyond the base of A.
To multiply i by 4, we shift it to the left by 2 bits. This is then added to the base address of A.

Given:

addi $s1, __$zero__, __0__
loop: ___slti___ $t1, $s1, 21

___beq___ $t1, $zero, end
sll $t2, $s1, __2__
add $t2, $t2, $s0
__________ $s1, 0($t2)
addi $s1, $s1, 1
j loop

end: …
Partial

Credit 4:

Solution 4:

Example: Jumps and Branches
Consider the following fragment of C code:

i=0;
while (i <= 20) {

A[i] = i;
i++;

}

Assume that A is an array of words and that
the base address of A is in $s0. Integer i resides
in $s1. Complete the corresponding assembly
language fragment by writing in the correct
instruction, register, or numerical value:

To place the value of i into A[i] we use the store word instruction. $t2 contains the calculate
address of A + i * 4, so we do not include any additional offset.

Given:

addi $s1, __$zero__, __0__
loop: ___slti___ $t1, $s1, 21

___beq___ $t1, $zero, end
sll $t2, $s1, __2__
add $t2, $t2, $s0
___sw___ $s1, 0($t2)
addi $s1, $s1, 1
j loop

end: …
Partial

Credit 4:

Solution 4:

Review: Procedures
Most programming languages allow you to separate out individual tasks and subtasks into their own
functions or methods. The abstract term for this in assembly is “procedures”. The code for
procedures is appended to the end of the main text and we access them by jumping to their starting
location and jumping back when finished. There are two special jump instructions for this purpose:

jump and link jal 10000 $31 = PC + 4; PC = 40000

jump register jr $31 PC = $31

Register $31 is known as the return address register. Parameters are passed to the procedure
through argument registers and results are returned through return value registers.

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

Given:

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

This function contains two major sections: the if and the else. We should assume that n will
arrive in the first argument register: $a0. So our first step in the function is to see if $a0 is less
than or equal to 1. Since this is an integer, we can check to see if $a0 is less than 2.

Given:

recSum: slti $t0, $a0, 2 #$t0 = 1 if n <= 1
Solution 1:

Partial
Credit 1:

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

If $a0 is not less than 2 then $t0 will be equal to 0 and we want to jump to the else statement.

Given:

recSum: slti $t0, $a0, 2 #$t0 = 1 if n <= 1
beq $t0, $zero, else #jump to else if $t0=0

Solution 2:

Partial
Credit 2:

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

If $a0 is less than 2 then we should return n. We need to place n (stored in $a0) into the first
return value register ($v0). Then we can use our return instruction to return to the calling
location stored the return address register ($ra).

Given:

recSum: slti $t0, $a0, 2 #$t0 = 1 if n <= 1
beq $t0, $zero, else #jump to else if $t0=0
add $v0, $a0, $zero #place $a0 in $v0
jr $ra #return

Solution 3:

Partial
Credit 3:

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

In the else portion of the function we have a function call. To call a function we need to place the
parameter n-1 into $a0. But we also need to preserve the parent function’s copy of $a0. Similarly,
when we call the function, $ra is automatically replaced and we need to preserve a copy of the parent
function’s $ra. We store both of these on the stack.

First, move the stack pointer ($sp) to accommodate two new values. Then store $a0 and $ra on the
stack.

Given:

recSum: slti $t0, $a0, 2 #$t0 = 1 if n <= 1
beq $t0, $zero, else #jump to else if $t0=0
add $v0, $a0, $zero #place $a0 in $v0
jr $ra #return

else: addi $sp, $sp, -8 #move the sp down 2
sw $ra, 4($sp) #store $ra in memory
sw $a0, 0($sp) #store $a0 in mem

Solution 4:

Partial
Credit 4:

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

To perform the actual function call we need to place the parameter n-1 into $a0. Now that we
have preserved the parent function’s copy of $a0 on the stack, we can modify $a0.

Remember that MIPS does not contain a subi instruction. Instead we use addi with a negative
number.

Given:

recSum: slti $t0, $a0, 2 #$t0 = 1 if n <= 1
beq $t0, $zero, else #jump to else if $t0=0
add $v0, $a0, $zero #place $a0 in $v0
jr $ra #return

else: addi $sp, $sp, -8 #move the sp down 2
sw $ra, 4($sp) #store $ra in memory
sw $a0, 0($sp) #store $a0 in mem
addi $a0, $a0, -1 #subtract 1 from $a0

Solution 5:

Partial
Credit 5:

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

Everything is now set up for the function call,
so we use the instruction jump and link to
jump to the function and setup $ra for when
the function returns.

Given:

recSum: slti $t0, $a0, 2 #$t0 = 1 if n <= 1
beq $t0, $zero, else #jump to else if $t0=0
add $v0, $a0, $zero #place $a0 in $v0
jr $ra #return

else: addi $sp, $sp, -8 #move the sp down 2
sw $ra, 4($sp) #store $ra in memory
sw $a0, 0($sp) #store $a0 in mem
addi $a0, $a0, -1 #subtract 1 from $a0
jal recSum #call recSum

Solution 6:

Partial
Credit 6:

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

When we return from our recursive call, we
restore the stack to it’s previous state.

Given:

recSum: slti $t0, $a0, 2 #$t0 = 1 if n <= 1
beq $t0, $zero, else #jump to else if $t0=0
add $v0, $a0, $zero #place $a0 in $v0
jr $ra #return

else: addi $sp, $sp, -8 #move the sp down 2
sw $ra, 4($sp) #store $ra in memory
sw $a0, 0($sp) #store $a0 in mem
addi $a0, $a0, -1 #subtract 1 from $a0
jal recSum #call recSum
lw $a0, 0($sp) #restore $a0
lw $ra, 4($sp) #restore $ra
addi $sp, $sp, 8 #move the sp up 2

Solution 7:

Partial
Credit 7:

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

Now that we have returned from the function
call, we should have the result of “recSum(n-1)”
stored in $v0. We need to add n to this and
place the result in $v0 to be our return value.

Given:

recSum: slti $t0, $a0, 2 #$t0 = 1 if n <= 1
beq $t0, $zero, else #jump to else if $t0=0
add $v0, $a0, $zero #place $a0 in $v0
jr $ra #return

else: addi $sp, $sp, -8 #move the sp down 2
sw $ra, 4($sp) #store $ra in memory
sw $a0, 0($sp) #store $a0 in mem
addi $a0, $a0, -1 #subtract 1 from $a0
jal recSum #call recSum
lw $a0, 0($sp) #restore $a0
lw $ra, 4($sp) #restore $ra
addi $sp, $sp, 8 #move the sp up 2
add $v0, $v0, $a0 #v0 = n+recSum(n-1)

Solution 8:

Partial
Credit 8:

Example: Procedures
Convert the following function written in the C programming language into a MIPS procedure.

int recSum(int n) {
if (n <= 1)

return n;
else

return n + recSum(n-1);
}

To end the function we use the return
instruction to return to the calling location
stored the return address register ($ra).

Given:

recSum: slti $t0, $a0, 2 #$t0 = 1 if n <= 1
beq $t0, $zero, else #jump to else if $t0=0
add $v0, $a0, $zero #place $a0 in $v0
jr $ra #return

else: addi $sp, $sp, -8 #move the sp down 2
sw $ra, 4($sp) #store $ra in memory
sw $a0, 0($sp) #store $a0 in mem
addi $a0, $a0, -1 #subtract 1 from $a0
jal recSum #call recSum
lw $a0, 0($sp) #restore $a0
lw $ra, 4($sp) #restore $ra
addi $sp, $sp, 8 #move the sp up 2
add $v0, $v0, $a0 #v0 = n+recSum(n-1)
jr $ra #return

Solution 9:

Partial
Credit 9:

	CDA 3103: Study Set 5
	Review: Basic Assembly
	Review: Basic Assembly
	Review: Basic Assembly
	Review: Basic Assembly
	Example: Basic Assembly
	Example: Basic Assembly
	Example: Basic Assembly
	Example: Basic Assembly
	Example: Basic Assembly
	Example: Basic Assembly
	Example: Basic Assembly
	Review: Types of Instructions
	Review: Types of Instructions
	Review: Types of Instructions
	Example: Arithmetic I-Types
	Example: Arithmetic I-Types
	Example: Arithmetic I-Types
	Example: Arithmetic I-Types
	Example: Arithmetic I-Types
	Review: Memory Format
	Review: Memory Format
	Review: Memory Format
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Example: Arrays, Loading, and Storing
	Review: Jumps and Branches
	Review: Jumps and Branches
	Review: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Example: Jumps and Branches
	Review: Procedures
	Example: Procedures
	Example: Procedures
	Example: Procedures
	Example: Procedures
	Example: Procedures
	Example: Procedures
	Example: Procedures
	Example: Procedures
	Example: Procedures
	Example: Procedures

