
MIPS
Instruction Set Architecture

Introduction

• Hardware

• Voltages

• Logic Gates

• Latches

• Flip-Flops

• Registers

• Adders

• Arithmetic Logic Unit

Introduction

• Hardware Languages

• Instruction Sets

• MIPS Assembly Language

• Machine Code

• Binary

• Hexadecimal

Instruction Set

• Instructions: the words of a computer language

• Instruction set: vocabulary

• Repertoire of instructions of a computer

• Instruction sets may differ from computer to computer, but

have many things in common.

• Computational operations

• Memory access & addressing

• Branches

• Procedure calls

MIPS Instruction Set

• All instruction sets promote a common goal.

• Make it easy to build the hardware and the compiler while

maximizing performance and minimizing cost.

• MIPS is a popular instruction set and still has a share of

the embedded core market

Arithmetic Operations

• Addition

add a, b, c

a = b + c

Arithmetic Operations

• Each instruction performs only one operation.

• Each instruction must have three variables.

• Two sources and one destination.

Arithmetic Operations

• a = b + c + d + e

add a, b, c #a = b + c

add a, a, d #a = b + c + d

add a, a, e #a = b + c + d + e

Arithmetic Operations

• Each line can only have one instruction on it

• Anything following a # is a comment.

Arithmetic Operations

• From C to MIPS

a = b + c;

d = a – e;

add a, b, c

sub d, a, e

Arithmetic Operations

• From C to MIPS

f = (g + h) – (i + j);

add t0, g, h #temporary variable t0 = g + h

add t1, i, j #temporary variable t1 = i + j

sub f, t0, t1 #f = t0 – t1

Operands

• Instructions use register operands

• Registers

• Made from Flip-Flops

• Primitive used in hardware design

• Register Size

• 32 bits

• Called a “word”

• Number of Registers

• 32 registers in the register file

• Use for frequently accessed data

• Numbered 0 to 31

Operands

• MIPS naming conventions

• $00 - $31

• $XX

• A $ followed by two characters that represent the register

• Assembler names
• $t0, $t1, …, $t9 for temporary values

• $s0, $s1, …, $s7 for saved variables

Arithmetic Operations

• From C to MIPS

f = (g + h) – (i + j);

f g h i j

$s0 $s1 $s2 $s3 $s4

add $t0, $s1, $s2 #temporary variable t0 = g + h

add $t1, $s3, $s4 #temporary variable t1 = i + j

sub $s0, $t0, $t1 #f = t0 – t1

Memory Operands

• Simple variables

• Integers, Characters, etc.

• Data Structures

• Arrays, Structures

• Store data structures in main memory

Memory Operands

• To use data from main memory:

• Load values from memory into registers

• Store result from register to memory

Memory Operands

• Memory is byte addressed
• Each address identifies an 8-bit byte

• Words are aligned in memory
• Address must be a multiple of 4

Memory Operands

• load

• Copies data from memory to a register

• store

• Copies data from a register to memory

Memory Operands

lw destination, constant(register)

The “load word” instruction takes the sum of the constant

and the register to determine a memory address. The data

at this address is placed in the destination register.

Memory Operands

• From C to MIPS

• A is an array of 100 words

• g is a variable in $s1

• h is a variables in $s2

• base address of A is in $s3

g = h + A[8];

• First, we have to transfer A[8] to a register.

• A[8] is stored in memory address $s3 + 8*4

lw $t0, 32($s3) # t0 = A[8]

add $s1, $s2, $t0 # g = h + A[8]

Offset

Base Register

Memory Operands

sw data, constant(register)

The “store word” instruction takes the sum of the constant

and the register to determine a memory address. The data

in the first register operand will be placed at this address.

Memory Operands

• From C to MIPS

• A is an array of 100 words

• h is a variables in $s2

• base address of A is in $s3

A[12] = h + A[8]

lw $t0, 32($s3) # t0 = A[8]

add $t0, $s2, $t0 # t0 = h + A[8]

sw $t0, 48($s3) # store t0 in A[12]

Constant Operands

• Sometimes we need to use a constant value

• So far, we would need to load the constant into a register

• Requires two instructions: load word and add

• Instead, the “add immediate” instruction allows us to use

a constant instead of one of the register operands

Constant Operands

• From C to MIPS

s = s + 4

addi $s0, $s0, 4

Representing Instructions

• We know that computers use binary to represent data

• Register names are also mapped to numbers

• 08 $t0 16 $s0

• 09 $t1 17 $s1

• 10 $t2 18 $s2

• 11 $t3 19 $s3

• 12 $t4 20 $s4

• 13 $t5 21 $s5

• 14 $t6 22 $s6

• 15 $t7 23 $s7

Representing Instructions

• C Programming Language

• fruit = num_apples + num_oranges;

• MIPS Assembly

• add $s0, $s1, $s2

• Machine Code

• 0000 0010 0011 0010 1000 0000 0010 0000

Representing Instructions

• Instruction Format

• The layout of an instruction

• formed by pieces of the instruction called fields

Representing Instructions

• Instruction fields

• op: operation code (opcode)

• rs: first source register number

• rt: second source register number

• rd: destination register number

• shamt: shift amount (00000 for now)

• funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Representing Instructions

add $t0, $s1, $s2

Represented using decimal numbers in each field:

Convert each field to binary:

Result:

000000100011001001000000001000002

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

Representing Instructions

• Hexadecimal

• Instead of writing strings of 32-bit binary numbers, we can use

hexadecimal – a base that converts easily into binary.

• Hexadecimal is base 16

• Uses digits 0-9, A-F

• Replaces a group of four binary numbers with a single hexadecimal digit

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111

Representing Instructions

add $t0, $s1, $s2

000000100011001001000000001000002

0000 0010 0011 0010 0100 0000 0010 0000

0 2 3 2 4 0 2 0

0x02324020

Representing Instructions

• Convert from hexadecimal to binary:

0xECA86420

E C A 8 6 4 2 0

1110 1100 1010 1000 0110 0100 0010 0000

Instruction Formats

• What if we need longer fields?

• The load word instruction specifies two registers and a constant.

• With our current fields, the constant is restricted to 5 or 6 bits

• Same size for all instructions

vs. Same format for all instructions

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Instruction Formats

• R-type

• I-type

• J-type

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

op address

6 bits 26 bits

Instruction Formats

• I-type

• A 16 bit address allows:

• lw and sw to access a range of 8192 words

• addi to add constants in a range of +/- 215

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Instruction Formats

lw $t0, 32($s3)

Represented using decimal:

35 19 8 32

Represented in binary:

100011 10011 01000 0000000000100000

1000 1110 0110 1000 0000 0000 0010 0000

Represented in hexadecimal:

0x8E680020

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Instruction Formats

• Different formats complicate decoding, but allow 32-bit
instructions uniformly

• Keep formats as similar as possible
• First three fields of R-type and I-type are the same

• Fourth field of I-type is the size of the last 3 fields of R-type

• The first field (op) determines the type and is the same in
all three formats

From C to Machine Code

A[300] = h + A[300];

lw $t0, 1200($t1) #$t1 is the base register

add $t0, $s2, $t0 #$s2 is h

sw $t0, 1200($t1)

35 9 8 1200

0 18 8 8 0 32

43 9 8 1200

From C to Machine Code

A[300] = h + A[300];

lw $t0, 1200($t1) #$t1 is the base register

add $t0, $s2, $t0 #$s2 is h

sw $t0, 1200($t1)

100011 01001 01000 0000010010110000

000000 10010 01000 01000 00000 100000

101011 01001 01000 0000010010110000

Logical Operations

• Shifts

Logical Operation C Operator MIPS Instruction

Shift Left << sll

Shift Right >> srl

Shift Operations

• shamt: how many positions to shift

• Shift left logical
• Shift left and fill with 0 bits

• sll by i bits multiplies by 2i

• Shift right logical
• Shift right and fill with 0 bits

• srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Shift Operations

• 0000 0000 0000 00000 000 0000 0000 0000 1001 (9)

• Shift left by four:

• 0000 0000 0000 0000 0000 0000 0000 1001 0000 (144)

• 9 * 24 = 144

Shift Operations

sll $t2, $s0, 4 # t2 = s0 << 4

• R-type instruction that uses the shamt field:

0 0 16 10 4 0

Logical Operations

• Logical

Logical Operation C Operator MIPS Instruction

Bitwise AND & and, andi

Bitwise OR | or, ori

Bitwise NOT ~ nor

AND

• Bit-by-bit operation that leaves 1 in the result only if both

bits of the operands are 1.

and $t0, $t1, $t2

• Use AND to “mask” some bits in a word.

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

OR

• Bit-by-bit operation that leaves 1 in the result only if either

bits of the operands are 1.

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

NOT

• Bit-by-bit operation on only one operand that inverts each

bit: changes a 0 to a 1 and 1 to a 0

• NOR

• NOT OR

• A NOR 0 = NOT (A OR 0) = NOT A

The Constant Zero

• MIPS register 0 ($zero) is the constant 0

• Cannot be overwritten

• Useful for common operations

• move between registers

add $t2, $s1, $zero

• NOT

nor $t0, $t1, $zero

NOT

nor $t0, $t1, $zero #t0 = ~(t1 | 0)

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Logical Operations with Constants

• and immediate

• andi

• Or immediate

• ori

Branches

• Computer programs can make decisions
• If statements, Switch statements

• Branch to a labeled instruction if a condition is true
• Otherwise, continue sequentially

• beq rs, rt, L1
• if (rs == rt) branch to instruction labeled L1;

• bne rs, rt, L1
• if (rs != rt) branch to instruction labeled L1;

• j L1
• unconditional jump to instruction labeled L1

Branches

if (i==j)

f = g + h;

else

f = g - h;

i j f g h

$s0 $s1 $s2 $s3 $s4

Branches

if (i==j)
f = g + h;

else
f = g - h;

i $s0

j $s1

f $s2

g $s3

h $s4

bne $s0,$s1,Else
add $s2,$s3,$s4

j Exit

Else: sub $s2,$s3,$s4
Exit:

Loops

• Some computer programs require iteration

• while loops, for loops

Loops

while (save[i] == k)

i +=1;

Assume i in $s3, k in $s5, base address of save in $s6.

Loop: sll $t1, $s3, 2

add $t1, $t1, $s6

lw $t0, 0($t1)

bne $t0, $s5, Exit

addi $s3, $s3, 1

j Loop

Exit:

More Conditional Operations

• Set result to 1 if a condition is true

• Otherwise, set to 0

• slt rd, rs, rt

• if (rs < rt) rd = 1; else rd = 0;

• slti rt, rs, constant

• if (rs < constant) rt = 1; else rt = 0;

• Use in combination with beq, bne

slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Loops

for (i = 0; i < 10; i++)

sum += i;

Assume i in $s1 and sum in $s3.

addi $s1, $zero, 0

Loop: slti $t0, $s1, 10

beq $t0, $zero, Exit

add $s3, $s3, $s1

addi $s1, $s1, 1

j Loop

Exit:

Branch Instruction Design

• Why not blt, bge, etc?

• Hardware for <, ≥, … slower than =, ≠

• Combining with branch involves more work per instruction,

requiring a slower clock

• beq and bne are the common case

• slt, slti, beq, bne can be used to create any other necessary

conditions.

• This is a good design compromise

Signed vs. Unsigned

• Signed comparison: slt, slti

• Unsigned comparison: sltu, sltui

• Example

• $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

• $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

• slt $t0, $s0, $s1 # signed

• –1 < +1 $t0 = 1

• sltu $t0, $s0, $s1 # unsigned

• +4,294,967,295 > +1 $t0 = 0

Switch Statements

switch (selection) {

case 1:

….

case 2:

…

default:

}

if (selection == 1)

goto 1

else if (selection == 2)

goto 2

else

goto 3

Switch Statements

switch (selection) {

case 1:

….

case 2:

…

default:

}

Jump Address Table

• selection is an index to

the table

• the table contains

addresses

jr $s0

Stored Program Computers

• Instructions represented in binary

• Instructions and data stored in memory

• Programs can operate on programs
• e.g., compilers, linkers, …

• Binary compatibility allows
compiled programs to work
on different computers
• Standardized ISAs

Procedures

• We often write functions or methods

• procedures

• A procedure is stored subroutine that performs a specific

task based on the parameters it is provided

Procedure Calling

Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

Registers

• $a0-$a3: four argument registers

• $v0-$v1: two return value registers

• $ra: one return address register

Procedure Call Instructions

• Procedure call: jump and link

jal ProcedureLabel
• Address of following instruction put in $ra

• $ra = PC + 4

• Jumps to target address

• Procedure return: jump register

jr $ra
• Copies $ra to program counter (PC)

Procedures

• The parent program (caller) places parameters in $a0-$a3

• The caller uses jal to jump to the location of the function

being called (callee) and store the return address

• The callee completes its task and stores the result in

$v0-$v1

• The callee returns control with jr $ra

Stacks

• What if four argument registers and two return value

registers aren’t enough?

• Spilling Registers

• At the beginning of a procedure the contents of $s0-$s7 can be

saved in main memory

• The procedure can then use $s0-$s7 normally

• At the end, the previous values of $s0-$s7 are retrieved from main

memory

• Stacks are a natural structure to allocate dynamic data for

procedures

Stacks

• Stacks are a last-in-first-out structure

• Requires a stack pointer to place/remove registers

• Adjust the pointer by one word when items are added (pushed) or
removed (popped)

• MIPS stack pointer is a register: $sp

• The “bottom” of the stack is the highest address and the stack “grows”
from higher to lower addresses.

• Push: decrement $sp

write to main memory (at $sp)

• Pop: read from main memory (at $sp)

increment $sp

Leaf Procedure Example

int leaf_example (int g, int h, int i, int j) {

int f;

f = (g+h) – (i+j);

return f;

}

• Arguments g - j in $a0 - $a3

• f in $s0 (hence, need to save $s0 on stack)

• Result in $v0

Leaf Procedure Example

leaf_example:
addi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra

Leaf Procedure Example

• To reduce register spilling, we can choose to not save and

restore temporary registers.

Leaf Procedure Example

• leaf_example:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Procedures

• Not all procedures are leaf procedures

• Procedures call other procedures

• Procedures call copies of themselves (recursion)

• For nested call, caller needs to save on the stack:

• Its return address

• Any arguments and temporaries needed after the call

• Restore from the stack after the call

Non-Leaf Procedure Example

int fact (int n) {

if (n < 1)

return 1;

else

return n * fact(n - 1);

}

• Argument n in $a0

• Result in $v0

Non-Leaf Procedure Example

fact:
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mult $v0, $a0 # multiply to get result
mflo $v0 # copy result into vo
jr $ra # and return

Procedures

Preserved Not Preserved

Saved registers: $s0-$s7 Temporary registers: $t0-$t9

Stack pointer: $sp Argument registers: $a0-$a3

Return address: $ra Return value registers: $v0-$v1

Stack above the stack pointer Stack below the stack pointer

Stack Frame Layout

Arguments in
reverse order

Saved registers
including
old FP, SP

Local variables
and temporaries

SP

Access local variables
and saved registers at
fixed (positive) offset
from SP

Higher Addresses

Lower Addresses

Access arguments at
fixed offset from FP.
Allow variable number
of arguments.

Arguments
for next procedure

FP

Local Data on the Stack

• Local data allocated by callee

• Procedure frame (activation record)
• Used by some compilers to manage stack storage

Memory Layout

• Text: program code

• Static data: global variables
• static variables in C

• constant arrays and strings

• $gp initialized to address
allowing ±offsets
into this segment

• Dynamic data: heap
• “malloc” in C

• “new” in Java

• Stack: automatic storage

16 $s0 callee saves

. . .

23 $s7

24 $t8 temporary (cont’d)

25 $t9

26 $k0 reserved for OS kernel

27 $k1

28 $gp global pointer

29 $sp stack pointer

30 $fp frame pointer

31 $ra Return Address

0 $0 zero constant 0

1 $at reserved for assembler

2 $v0 expression evaluation &

3 $v1 function results

4 $a0 arguments (caller saves)

5 $a1

6 $a2

7 $a3

8 $t0 temporary: caller saves

. . .

15 $t7

MIPS: Software Register Convention

MIPS Register Usage and Saving

• The MIPS Architecture Has General-Purpose Registers

• the usage for arguments, stack/data/global pointers, preservation,

OS-reserved, etc. is a software convention

MIPS Register Usage and Saving

• Why are registers partitioned into caller and callee save?

• The goal is to minimize the number of registers saved and
restored across procedure calls
• but at the time a procedure is compiled there is generally

incomplete information about register usage by the procedure’s
caller and those it calls

• if the convention were purely caller save, then the caller would
have to save all registers whose value will be used again, even if
the callee is a simple leaf procedure that requires only the
argument registers

• if the convention were purely callee save, then the callee would
have to save any register it uses, even if the caller does not need
the register’s value

• so an efficient compromise is a partition of caller/callee save
registers

Characters

• Characters are represented in 8-bit bytes

• American Standard Code for Information Interchange (ASCII)

• 128 characters: 95 graphic, 33 control

• Latin-1

• 256 characters: ASCII characters + 96 more graphic characters

• Unicode

• Variable length: 8 bits (UTF-8), 16 bits (UTF-16), 32 bits

• Contains most of the world’s alphabets, plus symbols

Characters

• To load a character:

• Use load word to retrieve the correct 32 bit word

• Use logical instructions to extract the correct byte

• MIPS byte instructions

• load byte

• store byte

Byte Operations

• load byte lb rt, offset(rs)

• Loads a byte from rs+offset, placing it in the rightmost 8 bits of rt

• store byte sb rt, offset(rs)

• Stores the rightmost 8 bits of rt in rs+offset

lb $t0,0($sp) # Read byte from source

sb $t0,0($gp) # Write byte to destination

Strings

• Representing a string:

1. the first position of the string is reserved to give the

length of a string

4 C a r t

2. an accompanying variable has the length of the string

“Cart”

4

3. the last position of a string is indicated by a character used to

mark the end of a string.

C a r t \0 C programming language

Java programming language

String Copy Example

void strcpy (char x[], char y[]) {

int i;
i = 0;
while ((x[i]=y[i])!='\0')

i += 1;
}

• Addresses of x, y in $a0, $a1

• i in $s0

String Copy Example

strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item

sw $s0, 0($sp) # save $s0

add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1

lb $t2, 0($t1) # $t2 = y[i]

add $t3, $s0, $a0 # addr of x[i] in $t3

sb $t2, 0($t3) # x[i] = y[i]

beq $t2, $zero, L2 # exit loop if y[i] == 0

addi $s0, $s0, 1 # i = i + 1

j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0

addi $sp, $sp, 4 # pop 1 item from stack

jr $ra # and return

String Copy Example

• Since strcpy is a leaf procedure, we could store i in a

temporary register

• Avoids saving and restoring $s0 from the stack

• We can think of temporary registers as registers that the

callee should use whenever convenient.

• When a compiler finds a leaf procedure, it exhausts all

temporary registers before using registers it must save.

Halfword Operations

• load halfword lh rt, offset(rs)

• Loads a halfword from rs+offset, placing it in the rightmost 16 bits

of rt

• store halfword sh rt, offset(rs)

• Stores the rightmost 16 bits of rt in rs+offset

lh $t0,0($sp) # Read halfword from source

sh $t0,0($gp) # Write halfword to destination

Constants

• Immediate-type instructions have 16 bits for constant

values.

• 50% to 60% of constants fit within 8 bits

• 75% to 80% of constants fit within 16 bits

• The occasional 32-bit constant must be loaded into a

register before it can be used.

• Set the upper half of the register

• load upper immediate

• Set the lower half of the register

• or immediate

32-bit Constants

0000 0000 0011 1101 0000 1001 0000 0000

1. lui $s0, 61 # 61 = 0000 0000 0011 1101

$s0 = 0000 0000 0011 1101 0000 0000 0000 0000

2. ori $s0, $s0, 2304 # 2304 = 0000 1001 0000 0000

$s0 = 0000 0000 0011 1101 0000 1001 0000 0000

32-bit Constants

• The MIPS assembler must break larger constants into

pieces and reassemble them into a register.

• This is why there is one register reserved for the assembler: $at.

Addressing Modes

• Register Addressing

• Immediate Addressing

• Base Addressing

• PC-Relative Addressing

• Pseudodirect addressing

Register Addressing

• Destination and source operands are specified by registers

• R-Type Instructions

Immediate Addressing

• Source operand is specified by an immediate value.

• Arithmetic I-Types like addi, andi, ori, and slti

Base Addressing

• Source is determined by register + branch address

• I-Types lw, lh, lb

• Destination is determined by register + branch address

• I-Types sw, sh, sb

PC-relative Addressing

• Destination is determined by PC + Address x 4.

• I-Types beq and bne

• PC (program counter) is the location of our next address.

PC-relative Addressing

• Destination is determined by PC + Address x 4.
• I-Types beq and bne

• Address field is 16 bits

• If all addresses had to fit in 16 bits, programs could only be
216 bytes or 16,384 words long.

PC-relative Addressing

• Destination is determined by PC + Address x 4.
• I-Types beq and bne

• Conditional branches tend to branch to nearby instructions
• Some studies suggest half of all branches go less than 16

instructions away.

PC-relative Addressing

• Destination is determined by PC + Address x 4.

• I-Types beq and bne

• If we use PC as the register to be added to the address, our

branch range will be 215 words in either direction.

Pseudodirect Addressing

• Jump instructions specify a 26 bit address

• e.g.: j 10000

PC = PC31…28 : (address × 4)

PC = PC31…28 : 40000

2 10000

6 bits 26 bits

Pseudodirect Addressing

• The 26-bit address field is shifted to the left twice

• Multiplies by four and creates a 28 bit field

• Four most significant bits are copied from the current PC

Target Addressing Example

• Loop code from earlier example

• Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

Decoding Machine Language

• The first six bits are the opcode

• R-type

• I-type

• J-type

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

op address

6 bits 26 bits

Decoding Machine Language

• Based on the opcode:

• Bits 31-29 specify row

• Bits 28-26 specify column

Decoding Machine Language

• R-type instructions have an opcode of 000000

• Instruction is determined by funct field

• Bits 5-3 specify row

• Bits 2-0 specify column

MIPS Integer Arithmetic

• Why doesn’t MIPS have a subtract immediate instruction?

• Negative constants appear much less frequently in C and Java

• Since the immediate field holds both negative and positive

constants, add immediate with a negative number is equivalent to

subtract immediate with a positive number.

Sort Example

void sort (int v[], int n) {
int i, j;
for (i=0; i<n; i++)

for (j=i-1; j>= 0 && v[j] > v[j+1]; j--)
swap(v, j);

}

void swap(int v[], int k) {
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

Translate Swap (Leaf Procedure)

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

Translate Swap (Leaf Procedure)

1. Allocate registers to program variables.

void swap(int v[], int k)

Base address of v in $a0

k in $a1

temp in $t0

Translate Swap (Leaf Procedure)

2. Produce code for the body of the procedure.

swap:

sll $t1, $a1, 2 # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

(address of v[k])

lw $t0, 0($t1) # $t0 (temp) = v[k]

lw $t2, 4($t1) # $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

sw $t0, 4($t1) # v[k+1] = $t0 (temp)

jr $ra # return to calling routine

Translate sort

void sort (int v[], int n) {

int i, j;

for (i=0; i<n; i++)

for (j=i-1; j>= 0 && v[j] > v[j+1]; j--)

swap(v, j);

}

Translate sort – Outer for loop

for (i=0; i<n; i++)

add $s0, $zero, $zero #initialize i

for1:

slt $t0, $s0, $a1 #reg $t0 = 0 if $s0 >= $a1 (i>=n)

beq $t0, $zero,exit1 #go to exit1 if $s0>=$a1 (i>=n)

…

j for1 #jump to test of outer loop

exit1:

Translate sort – Inner for loop

for (j=i-1; j>= 0 && v[j] > v[j+1]; j--)

addi $s1, $s0, –1 # j = i – 1

for2:

slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j<0)

bne $t0, $zero,exit2 # go to exit2 if $s1<0 (j<0)

sll $t1, $s1,2 # reg $t1 = j * 4

add $t2, $a0,$t1 # reg $t2 = v + (j * 4)

lw $t3, 0($t2) # reg $t3 = v[j]

lw $t4, 4($t2) # reg $t4 = v[j + 1]

slt $t0, $t4, $t3 # reg $t0 = 0 if $t4 >= $t3

beq $t0, $zero,exit2 # go to exit2 if $t4 >= $t3

...

addi $s1, $s1, –1 # j -= 1

j for2 # jump to test of inner loop

exit2:

Translate sort – Calling Swap

• Preserve contents of $a0 and $a1

• If we have unused registers, storing $a0 and $a1 there will be

faster than storing on the stack

add $s2, $a0, $zero # copy parameter $a0 into $s2

add $s3, $a1, $zero # copy parameter $a1 into $s3

add $a0, $s2, $zero # first swap parameter is v

add $a1, $s1, $zero # second swap parameter is j

jal swap

Translate sort – before the loops

• Save registers when sort begins

addi $sp,$sp,–20 # make room on stack for 5 regs

sw $ra,16($sp) # save $ra on stack

sw $s3,12($sp) # save $s3 on stack

sw $s2, 8($sp) # save $s2 on stack

sw $s1, 4($sp) # save $s1 on stack

sw $s0, 0($sp) # save $s0 on stack

Translate sort – after the loops

• Restore registers when sort ends

lw $s0, 0($sp) # restore $s0 from stack

lw $s1, 4($sp) # restore $s1 from stack

lw $s2, 8($sp) # restore $s2 from stack

lw $s3,12($sp) # restore $s3 from stack

lw $ra,16($sp) # restore $ra from stack

addi $sp,$sp, 20 # restore stack pointer

Translate Sort

sort:

addi $sp,$sp, –20 # make room on stack for 5

registers

sw $ra, 16($sp) # save $ra on stack

sw $s3,12($sp) # save $s3 on stack

sw $s2, 8($sp) # save $s2 on stack

sw $s1, 4($sp) # save $s1 on stack

sw $s0, 0($sp) # save $s0 on stack

add $s2, $a0, $zero # copy parameter $a0 into $s2

add $s3, $a1, $zero # copy parameter $a1 into $s3

add $s0, $zero, $zero # i = s0 = 0

for1:

slt $t0, $s0, $a1 # reg $t0 = 0 if $s0 >= $a1 (i>=n)

beq $t0, $zero,exit1 # go to exit1 if $s0 $a1 (i>=n)

addi $s1, $s0, –1 # j = i – 1

for2:

slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j<0)

bne $t0, $zero,exit2 # go to exit2 if $s1<0 (j<0)

sll $t1, $s1,2 # reg $t1 = j * 4

add $t2, $a0,$t1 # reg $t2 = v + (j * 4)

lw $t3, 0($t2) # reg $t3 = v[j]

lw $t4, 4($t2) # reg $t4 = v[j + 1]

slt $t0, $t4, $t3 # reg $t0 = 0 if $t4 >= $t3

beq $t0, $zero,exit2 # go to exit2 if $t4 >= $t3

add $a0, $s2, $zero # first swap parameter is v

add $a1, $s1, $zero # second swap parameter is j

jal swap

addi $s1, $s1, –1 # j -= 1

j for2 # jump to test of inner loop

exit2:

addi $s0, $s0, 1 # i += 1

j for1 # jump to test of outer loop

exit1:

lw $s0, 0($sp) # restore $s0 from stack

lw $s1, 4($sp) # restore $s1 from stack

lw $s2, 8($sp) # restore $s2 from stack

lw $s3,12($sp) # restore $s3 from stack

lw $ra,16($sp) # restore $ra from stack

addi $sp,$sp, 20 # restore stack pointer

jr $ra # return to calling routine

Translation and Startup

Many compilers produce

object modules directly

Static linking

Step 1: Compiling

• A compiler transforms a high-level language into

assembly instructions and pseudoinstructions

• High level languages use fewer lines of code

• Modern programmer productivity is higher

• Modern compilers are better at optimizing assembly language

Assembler Pseudoinstructions

• Pseudoinstructions: common variation of assembly

language instructions

move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

Step 2: Assembly

• resolve labels on instructions and data:

• relative to PC for instructions

• relative to some register for data

• either two-pass or use backpatch to resolve external references and PC-relative

spans

• expand any macros and pseudoinstructions

• handle any assembler directives: data layout

• translate instructions to binary

• create object file:

• headers

• code segment (called text in Unix)

• data segment

• relocation information: instruction/data words to relocate

• symbol table: unresolved references + visible symbols

• debugging information

Step 3: Linking

• Standard library routines are often not recompiled

• The linker will use the already compiled version

1. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

• The result is an executable file with no unresolved

references.

Step 4: Loading

• reads executable

• loads code and data segments

• initializes registers, stack, and arguments

• jumps to program’s start-up routine to initiate execution

Dynamic Linking

• Static Linking Advantage

• fastest method to call library routines

• Static Linking Disadvantages

• Routines become part of the executable code

• Updating is more difficult

• The whole library must be loaded

• Dynamic linking postpones loading and linking library

routines until the program is run.

• Very slow the first time the routine is called

Summary - MIPS

• 32 general purpose registers

• Software conventions assign properties to registers

• 32-bit wide instructions

• 3 formats: R-type, I-type, J-type

• Machine code: binary or hexadecimal

• Reduced Instruction Set

• Operations: Arithmetic, Logical, Data Transfer, Conditional

Summary – Design Issues

1. Simplicity favors regularity. Regularity motivates many

features of the MIPS instruction set: keeping all

instructions a single size, always requiring three register

operands in arithmetic instructions, and keeping the

register fields in the same place in each instruction

format.

2. Smaller is faster. The desire for speed is the reason that

MIPS has 32 registers rather than many more.

Summary – Design Issues

3. Make the common case fast. Examples of making the

common MIPS case fast include PC-relative addressing

for conditional branches and immediate addressing for

constant operands.

4. Good design demands good compromises. One MIPS

example was the compromise between providing for

larger addresses and constants in instructions and

keeping all instructions the same length.

