COMPUTER ARITHMETIC

Background Information

- Binary Numbers
 - 2's Complement representation
 - Addition
 - Subtraction
- Arithmetic Logic Unit
 - Contains Adders to perform addition and subtraction

Integer Multiplication

• "Paper and pencil" example

Multiplicand	1000
Multiplier	x 1001
	1000
	0000
	0000
+	- 1000
Product	01001000

Shift after each step

Combinational Multiplier

Partial product accumulation

				A3	A2	A 1	A0
			_	B3	B2	B1	B0
				A3 B0	A2 B0	A1 B0	A0 B0
			A3 B1	A2 B1	A1 B1	A0 B1	
		A3 B2	A2 B2	A1 B2	A0 B2		
	A3 B3	A2 B3	A1 B3	A0 B3			
S 7	S 6	S5	S 4	S3	S2	S 1	S0

Combinational Multiplier

Partial product accumulation

Note use of parallel carry-outs to form higher order sums 12 Adders, if full adders, this is 6 gates each = 72 gates 16 gates form the partial products total = 88 gates

Integer Multiplication

• "Paper and pencil" example

Multiplicand	1000
Multiplier	x 1001
	1000
	0000
	0000
+	- 1000
Product	01001000

Shift after each step

Observations

- Number of bits in the product is larger than the number in either the multiplicand or the multiplier.
 - m bits x n bits = m+n bit product
 - Overflow is a possible issue
- Binary rules "choices"
 - 0 => place 0 (0 x multiplicand)
 - 1 => place a copy (1 x multiplicand)
- 3 versions of unsigned multiplication hardware
 - successive refinement

Multiplication

- Insight from paper and pencil algorithm
 - Shift the multiplicand left one digit each step
 - With 32 steps in a 32-bit number, we move 32 bits to the left
 - Requires a 64-bit register
 - Place 32 zeroes in the left half (unoccupied half)
 - Unsigned numbers do not require sign extension
 - Multiplicand will be added to the sum in the product register
 - Product register will also be 64 bits
 - Requires a 64 bit ALU to add

Multiplication Hardware Version 1

 64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg, 32bit multiplier reg

Figure 3.3 from text

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	00001011	1001	Initialize
1	1a.	00001011	00001011	1001	Add
1	2,3	00001011	00010110	0100	Shifts
2	1	00001011	00010110	0100	Test-no add
2	2,3	00001011	00101100	0010	Shifts
3	1	00001011	00101100	0010	Test-no add
3	2,3	00001011	01011000	0001	Shifts
4	1a.	01100011	01011000	0001	Add
4	2,3	01100011	10110000	0000	Shifts

Multiplication is Time Consuming

- 3 steps per iteration
- 32 iterations
- 96 steps total

Observations on Multiplication Version 1

- Half the bits of the multiplicand are always 0
 - 64-bit adder is wasted
- 0's inserted in right of multiplicand as shifted
 - LSBs of product never changed once formed
- Instead of shifting the multiplicand to the left we can shift the product to the right
 - Perform some steps in parallel

Multiplication Hardware Version 2

 <u>32</u>-bit Multiplicand reg, <u>32</u>-bit ALU, <u>64</u>-bit Product reg, 32-bit Multiplier reg

Figure from a previous version of the text

Figure from a previous version of the text

lter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize

lter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
				Test the LSB	of multiplier
				1 indicates A	dd

lter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
				1001	Add
				Add the left ha	alf of the product
				to the multiplicand. Stor	
				left half of pro	duct.

lter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
1	1a.	10110000	1011	1001	Add
				Add the left half of the produte to the multiplicand. Store in	
				left half of pro	oduct.

lter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
1	1a.	1011 0000	1011	1001	Add
				Shift both the product and the multiplier to the right.	

lter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
1	1a.	10110000	1011	1001	Add
1	2, 3	01011000	1011	0100	Shifts
				Shift both the	e product and

Shift both the product and the multiplier to the right.

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
1	1a.	10110000	1011	1001	Add
1	2,3	01011000	1011	0100	Shifts
2	1	01011000	1011	0100	Test-no add
2	2,3	00101100	1011	0010	Shifts
3	1	00101100	1011	0010	Test-no add
3	2,3	00010110	1011	0001	Shifts
4	1a.	11000110	1011	0001	Add
4	2,3	01100011	1011	0000	Shifts

Observation

Product register wastes space (lower half = 0)

Exactly equal to the size of multiplier left

We can combine Multiplier register and Product register

Figure from a previous version of the text

Multiplication Hardware Version 3

 <u>32</u>-bit Multiplicand reg, <u>32</u>-bit ALU, <u>64</u>-bit Product reg, (no Multiplier reg)

Iter.	Step	Product	Multiplicand	Action
0	0	0000 <u>1001</u>	1011	Initialize
1	1a.	1011 <u>1001</u>	1011	Add
1	2	0101 1 <u>100</u>	1011	Shift
2	1	0101 1 <u>100</u>	1011	Test-no add
2	2	0010 11 <u>10</u>	1011	Shift
3	1	0010 11 <u>10</u>	1011	Test-no add
3	2	0001 011 <u>1</u>	1011	Shift
4	1a.	1100 011 <u>1</u>	1011	Add
4	2	0110 0011	1011	Shift

Note: Multiplier in Product Register is underlined

Multiplying by a Constant

- Some compilers replace multiplies by short constants with a series of shifts and adds. Because one bit to the left represents a number twice as large in base 2, shifting the bits left has the same effect as multiplying by a power of 2.
- Almost every compiler will perform the strength reduction optimization of substituting a left shift for a multiply by a power of 2.

Multiplying by a Constant

- Some compilers replace multiplies by short constants with a series of shifts and adds. Because one bit to the left represents a number twice as large in base 2, shifting the bits left has the same effect as multiplying by a power of 2.
- Almost every compiler will perform the strength reduction optimization of substituting a left shift for a multiply by a power of 2.
- 4 * 2 = 8
- 0100 * 0010 = 1000
- 0100 << 1 = 1000

Multiplying by a Constant

- Some compilers replace multiplies by short constants with a series of shifts and adds. Because one bit to the left represents a number twice as large in base 2, shifting the bits left has the same effect as multiplying by a power of 2.
- Almost every compiler will perform the strength reduction optimization of substituting a left shift for a multiply by a power of 2.
- 2 * 4 = 8
- 0010 * 0100 = 1000
- 0010 << 2 = 1000

Signed Multiplication

- So far, we have multiplied unsigned numbers
- What about signed multiplication?
 - one solution: make both positive
 - leave out the sign bit, run for 31 steps
 - set sign bit negative if signs of inputs differ

Booth's Algorithm

- multiply two's complement signed numbers
- uses same hardware as before
- can also be used to reduce the number of steps

Insight for Booth's Algorithm

• Example: 2 x 6 = 0010 x 0110:

	0010	
x	0110	
+	0000	<pre>shift (0 in multiplier)</pre>
+	0010	add (1 in multiplier)
+	0010	add (1 in multiplier)
+	0000	shift (0 in multiplier)
00001100		_

- ALU can get same result in more than one way:
 - 6 x = 4x + 2x or 6x = -2x + 8x
 - 111 = 1000 0001
 - 1111 = 10000 00001
 - 1111XXX = 10000XXX 00001XXX

Insight for Booth's Algorithm

- Replace string of 1s in multiplier with
 - initially subtract when we see first 1 (from right)
 - later, add when we see 0 at left end of the string of 1s.
- Example

	0010	
x	0110	
+	0000	shift (0 in multiplier)
-	0010	<pre>subtract (first 1 in string)</pre>
+	0000	shift (within string of 1s)
+	0010	add (end of string)
00001100		

• Effectively: $2 \times 6 = 2 \times 8 - 2 \times 2$

Booth's Algorithm

end of run 0(1 1 1 1 0)beginning of run

Current	Right	Explanation	Example
1	0	Beginning of a run of 1s	000111 <u>10</u> 00
1	1	Middle of a run of 1s	00011 <u>11</u> 000
0	1	End of a run of 1s	00 <u>01</u> 111000
0	0	Middle of a run of 0s	0 <u>00</u> 1111000

Booth's Algorithm

- 1. Depending on the current and previous bits, do one of the following:
 - 00: Middle of a string of 0s, so no arithmetic operations.
 - 01: End of a string of 1s, so add the multiplicand to the left half of the product.
 - 10: Beginning of a string of 1s, so subtract the multiplicand from the left half of the product.
 - 11: Middle of a string of 1s, so no arithmetic operation.
- 2. As in the previous algorithm, shift the Product register right (arithmetic shift) 1 bit.

Booth's Example (-5 x -6)

- Multiplicand = -6 = 1010; –Multiplicand = 6 = 0110
- Multiplier = -5 = 1011

lter.	Step	Product	Last	Action
0	0	0000 <u>101(1</u> 0)	0	Initialize
1	1.10	0110 <u>101(1</u> 0)	0	Start string: Subtract => Add 0110
1	2	0011 0 <u>10(1</u> 1)	1	Shift arithmetic
2	1.11	0011 0 <u>10(1</u> 1)	1	Middle string: nothing
2	2	0001 1 <u>01(0</u> 1)	1	Shift arithmetic
3	1.01	1011 10 <u>1(0</u> 1)	1	End string: add 1010
3	2	1101 110(<u>1</u> 0)	0	Shift arithmetic
4	1.10	0011 110(<u>1</u> 0)	0	Start string: Subtract => add 0110
4	2	0001 1110	1	Shift arithmetic

- Notes: 1. Multiplier in Product Register is underlined.
 - 2. Current/previous bits are in parentheses.
 - 3. Previous bit is initialized to 0
Booth's Algorithm

- Originally for speed: Shifts are faster than add
- Key advantage today: Works properly for 2's complement numbers without requiring special fix for sign!

Division: Paper and Pencil

• "Paper and pencil" example

Dividend = Quotient * Divisor + Remainder

Division: Paper and Pencil

• "Paper and pencil" example

• 20 ÷ 0	6 = 3 Remainde	er 2	
	00011	Quotient	
Divisor	110 10100	Dividend	
	'10		Algorithm:
	101		If Partial Remainder > Divisor
	1010		then Quotient bit = 1;
	<u>- 110</u>		Remainder = Remainder – Divisor
	1000		else Quotient bit = 0
	<u>- 110</u>		Shift down next dividend bit
	10	Remainde	r

Division Hardware

- Same as Multiplication Hardware!
- 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg
- Dividend stored in remainder register, Quotient formed in remainder register

Figure 3.11 from text

Division Example

• Example: $14 \div 3 = 4$; remainder 2.

Iter	Step	Rema	inder	Divisor	Action
0	0	0001	1100	0011	Initialize
1	1	1110	1100	0011	Subtract: Remainder<0
1	2b.	0011	1000	0011	Restore; shift in 0
2	1	0000	1000	0011	Subtract; Remainder=0
2	2a.	0001	0001	0011	Shift in a 1
3	1	1110	0001	0011	Subtract: Remainder<0
3	2b.	0010	0010	0011	Restore; shift in 0
4	1	1111	0010	0011	Subtract: Remainder<0
4	2b.	0100	0100	0011	Restore; shift in 0
	3	0010	0100	0011	Shift remainder right
		Rem.	Quot.		

Observations on Division Hardware

- Same Hardware as Multiply: just need ALU to add or subtract, and 64-bit register to shift left or shift right
- Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide

Signed Division

- Store the signs of the divisor and dividend
- Convert divisor and dividend to positive
- Complement quotient and remainder if necessary
 - Dividend and Remainder are defined to have same sign
 - Quotient negated if Divisor sign and Dividend sign disagree

Beyond Integers

- Real numbers
 - Called "float" values
- Computer arithmetic that supports real numbers is called floating point arithmetic

Exponential Notation

The following are equivalent representations of 1,234

Х	10 ⁻²
Х	10 ⁻¹
Х	100
Х	101
Х	102
Х	10 ³
Х	104
	X X X X X X

The representations differ in that the decimal place – the "point" --"floats" to the left or right (with the appropriate adjustment in the exponent).

Standards

- Floats are implemented using the IEEE 754 standard
 - found in virtually every computer invented since 1980
 - has greatly improved both the ease of porting floating-point programs and the quality of computer arithmetic.

• IEEE 754 was created to:

- Simplify exchange of data that includes floating-point numbers
- Simplify the floating-point arithmetic algorithms
- Increases the accuracy of the numbers that can be stored
 - Increased accuracy due to normalized scientific notation

Normalized Scientific Notation

- A number in scientific notation that has no leading 0s is called a normalized number.
 - 1.0_{ten} * 10^{-9} is in normalized scientific notation
 - 0.1_{ten} * 10⁻⁸ is not normalized
 - $10.0_{ten} * 10^{-10}$ is not in scientific notation

Floating Point: Scientific Notation

- Number represented as
 - Mantissa
 - Radix (base)
 - Exponent

In a binary number, the radix (or base) is 2 instead of 10. The general form could be written as 1.xxxxxx * 2^{yyyyy}.

Floating Point: Normalized Scientific Notation

- The mantissa must be normalized: 1.xxxxxx * 2^{yyyyy}
- Always has a 1 in front of the binary point
- This 1 does not need to be stored
- Floating point numbers have an implied "1" on left of the decimal place

 - **Represents** \rightarrow 1.101₂ = 1.625₁₀

IEEE 754 Standard

- Single precision: 32 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (8 bits)
 - Mantissa (23 bits)

Normalized binary significand with *hidden* bit (1): 1.M

IEEE 754 Standard

- Single precision: 32 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (8 bits)
 - Mantissa (23 bits)
- Fractions almost as small as 2.0_{ten} * 10⁻³⁸
- Numbers almost as large as 2.0_{ten} * 10³⁸
- Overflow may still occur
 - Exponent is too large to be represented
- Underflow may occur
 - Exponent is too small to be represented

IEEE 754 Standard

- Single precision: 32 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (8 bits)
 - Mantissa (23 bits)
- Double precision: 64 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (11 bits)
 - Mantissa (52 bits)

Normalized binary significand with *hidden* bit (1): 1.M

Normalization

- General form for floating-point numbers: (-1)^S * (1+M) * 2^E
- How do we represent zero?
 - E = 0
 - M = 0

Excess Notation

- To include positive (+ve) and negative (–ve) exponents, "excess" notation is used
- Also called biased notation
- Represents the most negative exponent as $0...0_{two}$ and the most positive exponent as $1...1_{two}$.

Excess Notation

- The value of the exponent stored is larger than the actual exponent
- Single precision: excess 127
- Double precision: excess 1023
- Each real number is (-1)^S * (1 + Fraction) * 2^(Exponent – Bias)
- E.g., excess 127,
 - Exponent \rightarrow 10000111
 - Represents... 135 127 = 8

Single precision

 What decimal value is represented by the following 32-bit floating point number?

Converting from Floating PointStep 1: find S, E, and M

• Step 2: Find "real" exponent, n

$$= 10000010_2 - 127$$

- Step 3: Put S, M, and n together to form binary result
 - Don't forget the implied "1." on the left of the mantissa.

$$-1.1111011_2 \times 2^n =$$

 $-1.1111011_2 \times 2^3 =$
 -1111.1011_2

Step 4: Express result in decimal

Express 36.5625₁₀ as a 32-bit floating point number

Step 1: Express original value in binary

 $36.5625_{10} = 100100.1001_2$

$$36 = 2 * 18 + 0 .5625 * 2 = 1.125$$

$$18 = 2 * 9 + 0 .125 * 2 = 0.25$$

$$9 = 2 * 4 + 1 .25 * 2 = 0.5$$

$$4 = 2 * 2 + 0 .5 * 2 = 1.0$$

$$2 = 2 * 1 + 0 .0 * 2 = 0.0$$

$$1 = 2 * 0 + 1 .0 * 2 = 0.0$$

$$0 * 2 = 0.0$$

Step 2: Normalize

 $100100.1001_2 = 1.001001001_2 \times 2^5$

Converting to Floating Point Step 3: Determine S, E, and M

Step 4: Put S, E, and M together to form 32-bit binary result

Special Values

<u>Exponent</u>	Significand	<u>Value</u>
0	0	0
0	nonzero	denormalized number
1e _{max} -1	anything	normal floating point number
e _{max}	0	infinity
e _{max}	nonzero	Not a Number (NaN)

- Single Precision: Exponents of 0 and 255 have special meaning
 - E=0, M=0 represents 0 (sign bit still used so there is +/-0)
 - E=0, M≠0 is a denormalised number (+/-0.Mx2⁻¹²⁶) (smaller than the smallest normalised number)
 - E=255, M=0 represents +/- infinity
 - E=255, M ≠ 0 represents NaN (not a number, e.g., returned for 0/0 or sqrt(-1))

Floating Point Operations

- Arithmetic:
 - multiplication, division:
 - multiply/divide mantissa
 - add/subtract exponent
 - example: $5.6 \times 10^{11} \times 6.7 \times 10^{12} = 5.6 \times 6.7 \times 10^{23}$
 - Addition, subtraction
 - convert operands to have the same exponent value
 - add/subtract mantissas
 - example: $2.1 \times 10^3 + 4.3 \times 10^4 = 0.21 \times 10^4 + 4.3 \times 10^4$

Basic Addition Algorithm

- 1. Align binary points (denormalize smaller number)
 - a. compute Diff = Exp(Y) Exp(X);
 - **b.** Sig(X) = Sig(X) >> Diff
 - c. Exp = Exp(Y)
- 2. Add the aligned components
 - Sig = Sig (x) + Sig (Y)
- 3. Normalize the sum
 - Shift Sig right/left until leading bit is 1; decrementing or incrementing Exp.
 - Check for overflow in Exp
 - Round (needs more bits, as we will see)
 - repeat step 3 if not still normalized

Basic Addition Algorithm

Addition Example

11.0 + 6.0, 4-bit mantissa 1.0110 x 2^3 + 1.1000 x 2^2

1. Align binary points (denormalize smaller number) 1.0110 x 2³ +0.1100 x 2³

2. Add the aligned components 10.0010 x 2^3 (=17)

3. Normalize the sum

 1.0001×2^{4}

• No overflow, no rounding
Basic Multiplication Algorithm

1. Compute exponents

- Multiplication: Exp = Exp (X) + Exp (Y) bias;
- Division: Exp = Exp (X) Exp(Y) + bias;
- 2. Multiply/Divide significands
 - Multiplication: Sig = Sig (X) x Sig (Y);
 - Division: Sig = Sig(X) / Sig(Y);
- 3. Normalize the product
 - Shift Sig right until leading bit is 1; incrementing Exp.
 - Check for overflow in Exp
 - repeat step 3 if not still normalized
- 4. Round
 - Any bits that do not fit must be discarded
- 5. Set sign
 - positive if signs same; negative if signs differ

Basic Multiplication Algorithm

Multiplication Example

.5 * -.4375, 4-bit mantissa 1.0000_{two} * 2^{-1} * – 1.1100_{two} * 2^{-2}

- 1. Compute exponents
 - -1 + (-2) = -3 With Bias: 126 + 125 127 = 124
- 2. Multiply/Divide significands 0111000000
- 3. Normalize the product
 - 1.11000000 * 2-3
- 4. Round
 - 1.1100 * 2⁻³
- 5. Set sign

-1.1100 * 2⁻³ because original signs differ

Multiplication Example

.5 * -.4375, 4-bit mantissa 1.0000_{two} * 2^{-1} * – 1.1100_{two} * 2^{-2}

1. Compute exponents

-1 + (-2) = -3

- 2. Multiply/Divide significands 0111000000
- 3. Normalize the product
 - 1.11000000 * 2-3
- 4. Round
 - 1.1100 * 2⁻³
- 5. Set sign

-1.1100 * 2⁻³ because original signs differ

 $\begin{array}{r}
11100 \\
\times 10000 \\
00000 \\
00000 \\
00000 \\
00000 \\
\underline{11100} \\
111000000
\end{array}$

Accuracy and Rounding

- Floating-point numbers are approximations for a number they can't really represent.
 - Infinite possible real numbers between 0 and 1
 - We can only represent 2⁵³ of them
 - Approximate by rounding

Rounding Modes

- IEEE Standard has five rounding modes:
 - round to nearest, ties to even (default)
 - round to nearest, ties away from zero
 - round towards plus infinity
 - round towards minus infinity
 - round towards 0

Rounding Hardware

- To round accurately, we need the hardware to include extra bits for the calculation.
- Specifically, we keep 2 extra bits on the right
 - Guard bit
 - Round bit

• The first bit to the right: an additional digit (bit) used in intermediate calculations to prevent loss of accuracy.

Example for Guard Bit

8.5 - 3.75 = 4.75, 4-bit mantissa $1.0001x2^3 - 1.1110x2^1$

- 1. Align binary point:
 - 1.0001 x 2³ -0.0111 x 2³
- 2. Subtract the aligned components: 0.1010×2^3
- 3. Normalize:
 - 1.0100×2^{2}

Note our answer is actually 5. With only 4-bits we are losing accuracy. Our result would be off by 0.25 or a whole bit in the least significant place.

Example for Guard Bit

8.5 - 3.75 = 4.75, 4-bit mantissa $1.0001x2^3 - 1.1110x2^1$

- 1. Align binary point:
 - $\begin{array}{ccccccc} 1.0001 & x & 2^{3} \\ -\underline{0.01111} & x & 2^{3} \\ \hline g \end{array}$
- 2. Subtract the aligned components:

0.10011 x 2³ g

3. Normalize:

 1.0011×2^2

Now our normalized value is accurate $1.0011 \times 2^2 = 4.75$

Round Bit

• Bit to the right of guard bit needed for accurate rounding.

Example for Round Bit

- Example: 1.0000 x 2° 1.0001 x 2^{-2}
 - guard and round bits shown
 - 1.0000×2^{0}
 - 0.010001×2^{0}
 - 0.101111 x 2[°] Result
 - 1.01111 x 2⁻¹ Normalize
 - 1.1000 x 2^{-1} Round; simple round up
 - Without round bit, result is 1.0111

Sticky Bit

- Round to nearest problems
 - need to know if actual result is closer to the next rounded value up or the next rounded value down.
 - With 4-bit significand, a result of 1.11011 could round to 1.1101 if rounding down or 1.1110 if rounding up
 - Potentially need a much greater number of bits
- Instead keep "sticky" bit (S):
 - used to determine whether there are any 1 bits truncated below the guard and round bits
 - S=1 if any bits are off to the right, otherwise S=0

Example for Sticky Bit

- 1.0000 x 2° + 1.0001 x 2^{-5}
 - guard, round, and sticky bits shown
 - 1.0000×2^{0}
 - + $0.00010 \times 2^{0}1$
 - 1.00001<u>0</u> x 2⁰ 1 Result
 - 1.0001 x 2⁰ Round to nearest Without S rounds to 1.0000.

Exceptions

- Invalid operation
 - result of operation is a NaN (except = or !=)
 - inf. +/- inf.; 0 * inf; 0/0; inf./inf.; x remainder y, y = 0;
 - sqrt(x) where x < 0, x = +/- inf.
- Overflow
 - result of operation is larger than largest representable number
 - flushed to +/- inf. if overflow exception is not enabled

Exceptions

- Divide by 0
 - x/0 where x = 0, +/- inf.;
 - flushed to +/- inf. if divide by zero exception not enabled
- Underflow
 - subnormal result OR non-zero result underflows to 0
- Inexact
 - rounded result not the actual result (rounding error = 0)

Exceptions

- IEEE Standard specifies defaults and allows traps to permit exceptions to be handled at the program level
 - contrast with the more usual result of aborting the computation altogether.