
COMPUTER

ARITHMETIC

Background Information

• Binary Numbers

• 2’s Complement representation

• Addition

• Subtraction

• Arithmetic Logic Unit

• Contains Adders to perform addition and subtraction

Integer Multiplication

• “Paper and pencil” example

Multiplicand 1000

Multiplier x 1001

1000

0000

0000 Shift after each step

+ 1000

Product 01001000

Combinational Multiplier

• Partial product accumulation
A0

B0

A0 B0

A1

B1

A1 B0

A0 B1

A2

B2

A2 B0

A1 B1

A0 B2

A3

B3

A3 B0

A2 B1

A1 B2

A0 B3

A3 B1

A2 B2

A1 B3

A3 B2

A2 B3A3 B3

S6 S5 S4 S3 S2 S1 S0S7

Combinational Multiplier
• Partial product accumulation

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each = 72 gates

16 gates form the partial products

total = 88 gates

A 0 B 0 A 1 B 0 A 0 B 1 A 0 B 2 A 1 B 1 A 2 B 0 A 0 B 3 A 1 B 2 A 2 B 1 A 3 B 0 A 1 B 3 A 2 B 2 A 3 B 1 A 2 B 3 A 3 B 2 A 3 B 3

HA

S 0 S 1

HA

F A

F A

S 3

F A

F A

S 4

HA

F A

S 2

F A

F A

S 5

F A

S 6

HA

S 7

Integer Multiplication

• “Paper and pencil” example

Multiplicand 1000

Multiplier x 1001

1000

0000

0000 Shift after each step

+ 1000

Product 01001000

Observations

• Number of bits in the product is larger than the number in

either the multiplicand or the multiplier.

• m bits x n bits = m+n bit product

• Overflow is a possible issue

• Binary rules – “choices”

0 => place 0 (0 x multiplicand)

1 => place a copy (1 x multiplicand)

• 3 versions of unsigned multiplication hardware

• successive refinement

Multiplication

• Insight from paper and pencil algorithm

• Shift the multiplicand left one digit each step

• With 32 steps in a 32-bit number, we move 32 bits to the left

• Requires a 64-bit register

• Place 32 zeroes in the left half (unoccupied half)

• Unsigned numbers do not require sign extension

• Multiplicand will be added to the sum in the product register

• Product register will also be 64 bits

• Requires a 64 bit ALU to add

Multiplication Hardware Version 1

• 64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg, 32-

bit multiplier reg

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multiplicand

Shift left

64 bits

64 bits

32 bits

Figure 3.3 from text

Multiplication

Algorithm Version 1

Done
Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Figure 3.4 from text

Multiplication Example (11x9)

Iter. Step Product Multiplicand Multiplier Action

0 0 00000000 00001011 1001 Initialize

1 1a. 00001011 00001011 1001 Add

1 2,3 00001011 00010110 0100 Shifts

2 1 00001011 00010110 0100 Test-no add

2 2,3 00001011 00101100 0010 Shifts

3 1 00001011 00101100 0010 Test-no add

3 2,3 00001011 01011000 0001 Shifts

4 1a. 01100011 01011000 0001 Add

4 2,3 01100011 10110000 0000 Shifts

Multiplication is Time Consuming

• 3 steps per iteration

• 32 iterations

• 96 steps total

Observations on Multiplication Version 1

• Half the bits of the multiplicand are always 0

• 64-bit adder is wasted

• 0’s inserted in right of multiplicand as shifted

• LSBs of product never changed once formed

• Instead of shifting the multiplicand to the left we can shift

the product to the right

• Perform some steps in parallel

Multiplication Hardware Version 2

• 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,

32-bit Multiplier reg

Multiplier

Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test

Figure from a previous version of the text

Multiplication

Algorithm

Version 2

Done

Yes: 32 repetitions
Done

1. Test

Multiplier0

1a. Add multiplicand to the left half of
the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Figure from a previous version of the text

Multiplication Example (11x9)

Iter. Step Product Multiplicand Multiplier Action

0 0 00000000 1011 1001 Initialize

Multiplication Example (11x9)

Iter. Step Product Multiplicand Multiplier Action

0 0 00000000 1011 1001 Initialize

Test the LSB of multiplier

1 indicates Add

Multiplication Example (11x9)

Iter. Step Product Multiplicand Multiplier Action

0 0 00000000 1011 1001 Initialize

1001 Add

Add the left half of the product

to the multiplicand. Store in

left half of product.

Multiplication Example (11x9)

Iter. Step Product Multiplicand Multiplier Action

0 0 00000000 1011 1001 Initialize

1 1a. 10110000 1011 1001 Add

Add the left half of the product

to the multiplicand. Store in

left half of product.

Multiplication Example (11x9)

Iter. Step Product Multiplicand Multiplier Action

0 0 00000000 1011 1001 Initialize

1 1a. 10110000 1011 1001 Add

Shift both the product and the

multiplier to the right.

Multiplication Example (11x9)

Iter. Step Product Multiplicand Multiplier Action

0 0 00000000 1011 1001 Initialize

1 1a. 10110000 1011 1001 Add

1 2, 3 01011000 1011 0100 Shifts

Shift both the product and the

multiplier to the right.

Multiplication Example (11x9)

Iter. Step Product Multiplicand Multiplier Action

0 0 00000000 1011 1001 Initialize

1 1a. 10110000 1011 1001 Add

1 2,3 01011000 1011 0100 Shifts

2 1 01011000 1011 0100 Test-no add

2 2,3 00101100 1011 0010 Shifts

3 1 00101100 1011 0010 Test-no add

3 2,3 00010110 1011 0001 Shifts

4 1a. 11000110 1011 0001 Add

4 2,3 01100011 1011 0000 Shifts

Multiplication

Algorithm

Version 2
Observation

Product register

wastes space

(lower half = 0)
Exactly equal to the

size of multiplier left

We can combine

Multiplier register

and Product register

Done

Yes: 32 repetitions
Done

1. Test

Multiplier0

1a. Add multiplicand to the left half of
the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Figure from a previous version of the text

Multiplication Hardware Version 3

• 32-bit Multiplicand reg, 32-bit ALU, 64-bit Product reg, (no

Multiplier reg)

Control

testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU

Figure 3.5 from text

Done

Multiplication

Algorithm

Version 3

Done

1. Test

Product0

1a. Add multiplicand to the left half of
the product and place the result in

the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Figure from a previous version of the text

Multiplication Example (11x9)

Iter. Step Product Multiplicand Action

0 0 0000 1001 1011 Initialize

1 1a. 1011 1001 1011 Add

1 2 0101 1100 1011 Shift

2 1 0101 1100 1011 Test-no add

2 2 0010 1110 1011 Shift

3 1 0010 1110 1011 Test-no add

3 2 0001 0111 1011 Shift

4 1a. 1100 0111 1011 Add

4 2 0110 0011 1011 Shift

Note: Multiplier in Product Register is underlined

Multiplying by a Constant

• Some compilers replace multiplies by short constants with

a series of shifts and adds. Because one bit to the left

represents a number twice as large in base 2, shifting the

bits left has the same effect as multiplying by a power of

2.

• Almost every compiler will perform the strength reduction

optimization of substituting a left shift for a multiply by a

power of 2.

Multiplying by a Constant

• Some compilers replace multiplies by short constants with

a series of shifts and adds. Because one bit to the left

represents a number twice as large in base 2, shifting the

bits left has the same effect as multiplying by a power of

2.

• Almost every compiler will perform the strength reduction

optimization of substituting a left shift for a multiply by a

power of 2.

• 4 * 2 = 8

• 0100 * 0010 = 1000

• 0100 << 1 = 1000

Multiplying by a Constant

• Some compilers replace multiplies by short constants with

a series of shifts and adds. Because one bit to the left

represents a number twice as large in base 2, shifting the

bits left has the same effect as multiplying by a power of

2.

• Almost every compiler will perform the strength reduction

optimization of substituting a left shift for a multiply by a

power of 2.

• 2 * 4 = 8

• 0010 * 0100 = 1000

• 0010 << 2 = 1000

Signed Multiplication

• So far, we have multiplied unsigned numbers

• What about signed multiplication?

• one solution: make both positive

• leave out the sign bit, run for 31 steps

• set sign bit negative if signs of inputs differ

Booth’s Algorithm

• multiply two’s complement signed numbers

• uses same hardware as before

• can also be used to reduce the number of steps

Insight for Booth’s Algorithm

• Example: 2 x 6 = 0010 x 0110:

0010

x 0110

+ 0000 shift (0 in multiplier)

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001100

• ALU can get same result in more than one way:

• 6 x = 4x + 2x or 6x = – 2x + 8 x

• 111 = 1000 – 0001

• 1111 = 10000 – 00001

• 1111XXX = 10000XXX – 00001XXX

Insight for Booth’s Algorithm

• Replace string of 1s in multiplier with

• initially subtract when we see first 1 (from right)

• later, add when we see 0 at left end of the string of 1s.

• Example

0010

x 0110

+ 0000 shift (0 in multiplier)

- 0010 subtract (first 1 in string)

+ 0000 shift (within string of 1s)

+ 0010 add (end of string)

00001100

• Effectively: 2 x 6 = 2 x 8 – 2 x 2

Booth’s Algorithm

Current Right Explanation Example

1 0 Beginning of a run of 1s 0001111000

1 1 Middle of a run of 1s 0001111000

0 1 End of a run of 1s 0001111000

0 0 Middle of a run of 0s 0001111000

0 1 1 1 1 0
beginning of runend of run

middle of run

Booth’s Algorithm

1. Depending on the current and previous bits, do one of

the following:

00: Middle of a string of 0s, so no arithmetic operations.

01: End of a string of 1s, so add the multiplicand to the left half of

the product.

10: Beginning of a string of 1s, so subtract the multiplicand from

the left half of the product.

11: Middle of a string of 1s, so no arithmetic operation.

2. As in the previous algorithm, shift the Product register

right (arithmetic shift) 1 bit.

Booth’s Example (-5 x -6)

• Multiplicand = –6 = 1010; –Multiplicand = 6 = 0110

• Multiplier = –5 = 1011
Iter. Step Product Last Action

0 0 0000 101(1 0) 0 Initialize

1 1.10 0110 101(1 0) 0 Start string: Subtract => Add 0110

1 2 0011 010(1 1) 1 Shift arithmetic

2 1.11 0011 010(1 1) 1 Middle string: nothing

2 2 0001 101(0 1) 1 Shift arithmetic

3 1.01 1011 101(0 1) 1 End string: add 1010

3 2 1101 110(1 0) 0 Shift arithmetic

4 1.10 0011 110(1 0) 0 Start string: Subtract => add 0110

4 2 0001 1110 1 Shift arithmetic

Notes: 1. Multiplier in Product Register is underlined.

2. Current/previous bits are in parentheses.

3. Previous bit is initialized to 0

Booth’s Algorithm

• Originally for speed: Shifts are faster than add

• Key advantage today: Works properly for 2’s complement

numbers without requiring special fix for sign!

Division: Paper and Pencil

• “Paper and pencil” example

• 20 ÷ 6 = 3 Remainder 2

00011 Quotient

110 10100 Dividend

10

101

1010

- 110_

1000

- 110

10 Remainder

Dividend = Quotient * Divisor + Remainder

Divisor

Division: Paper and Pencil

• “Paper and pencil” example

• 20 ÷ 6 = 3 Remainder 2

00011 Quotient

110 10100 Dividend

10

101

1010

- 110_

1000

- 110

10 Remainder

Divisor
Algorithm:

If Partial Remainder > Divisor

then Quotient bit = 1;

Remainder = Remainder – Divisor

else Quotient bit = 0

Shift down next dividend bit

Division Hardware

• Same as Multiplication Hardware!

• 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg

• Dividend stored in remainder register, Quotient formed in remainder register

Write

32 bits

64 bits

Shift left

Shift right

Remainder

32-bit ALU

Divisor

Control

test

Figure 3.11 from text

Division

Algorithm
Start

Done. Shift left half of Remainder right 1 bit

Test Remainder

3a. Shift the Remainder register to the
left, setting the new rightmost bit to 1

32nd repetition?

Start

Remainder < 0

No: < 32 repetitions

Yes: 32 repetitions

3b. Restore the original value by adding
the Divisor register to the left half of the
Remainder register and place the sum

in the left half of the Remainder register.
Also shift the Remainder register to the
left, setting the new rightmost bit to 0

2. Subtract the Divisor register from the
left half of the Remainder register and
place the result in the left half of the

Remainder register

Remainder 0

1. Place Dividend in Remainder register.

Shift the Remainder register left 1 bit

–>

Figure from a previous

version of the text

Takes n Steps for

n-bit Quotient and

Remainder

Division Example

• Example: 14 ÷ 3 = 4; remainder 2.

Iter Step Remainder Divisor Action

0 0 0001 1100 0011 Initialize

1 1 1110 1100 0011 Subtract: Remainder<0

1 2b. 0011 1000 0011 Restore; shift in 0

2 1 0000 1000 0011 Subtract; Remainder=0

2 2a. 0001 0001 0011 Shift in a 1

3 1 1110 0001 0011 Subtract: Remainder<0

3 2b. 0010 0010 0011 Restore; shift in 0

4 1 1111 0010 0011 Subtract: Remainder<0

4 2b. 0100 0100 0011 Restore; shift in 0

3 0010 0100 0011 Shift remainder right

Rem. Quot.

Observations on Division Hardware

• Same Hardware as Multiply: just need ALU to add or

subtract, and 64-bit register to shift left or shift right

• Hi and Lo registers in MIPS combine to act as 64-bit

register for multiply and divide

Signed Division

• Store the signs of the divisor and dividend

• Convert divisor and dividend to positive

• Complement quotient and remainder if necessary

• Dividend and Remainder are defined to have same sign

• Quotient negated if Divisor sign and Dividend sign disagree

Beyond Integers

• Real numbers

• Called “float” values

• Computer arithmetic that supports real numbers is called

floating point arithmetic

Exponential Notation

• The following are equivalent representations of 1,234

The representations differ in that

the decimal place – the “point” --

“floats” to the left or right (with

the appropriate adjustment in the

exponent).

123,400.0 x 10-2

12,340.0 x 10-1

1,234.0 x 100

123.4 x 101

12.34 x 102

1.234 x 103

0.1234 x 104

Standards

• Floats are implemented using the IEEE 754 standard

• found in virtually every computer invented since 1980

• has greatly improved both the ease of porting floating-point

programs and the quality of computer arithmetic.

• IEEE 754 was created to:

• Simplify exchange of data that includes floating-point numbers

• Simplify the floating-point arithmetic algorithms

• Increases the accuracy of the numbers that can be stored

• Increased accuracy due to normalized scientific notation

Normalized Scientific Notation

• A number in scientific notation that has no leading 0s is

called a normalized number.

• 1.0ten * 10–9 is in normalized scientific notation

• 0.1ten * 10–8 is not normalized

• 10.0ten * 10–10 is not in scientific notation

Floating Point: Scientific Notation

• Number represented as

• Mantissa

• Radix (base)

• Exponent

In a binary number, the radix (or base) is 2 instead of 10.

The general form could be written as 1.xxxxxx * 2yyyyy.

6.02 x 10
23

exponent

radix (base)Mantissa

decimal point

Sign
magnitude

Sign
magnitude

Floating Point: Normalized Scientific Notation

• The mantissa must be normalized: 1.xxxxxx * 2yyyyy

• Always has a 1 in front of the binary point

• This 1 does not need to be stored

• Floating point numbers have an implied “1” on left of the

decimal place

• Mantissa → 10100000000000000000000

• Represents → 1.1012 = 1.62510

IEEE 754 Standard

• Single precision: 32 bits, consisting of...
• Sign bit (1 bit)

• Exponent (8 bits)

• Mantissa (23 bits)

sign

1 8 23

exponent fraction

Normalized binary significand with
hidden bit (1): 1.M

S E M

IEEE 754 Standard

• Single precision: 32 bits, consisting of...
• Sign bit (1 bit)

• Exponent (8 bits)

• Mantissa (23 bits)

• Fractions almost as small as 2.0ten * 10–38

• Numbers almost as large as 2.0ten * 1038

• Overflow may still occur
• Exponent is too large to be represented

• Underflow may occur
• Exponent is too small to be represented

IEEE 754 Standard

• Single precision: 32 bits, consisting of...
• Sign bit (1 bit)

• Exponent (8 bits)

• Mantissa (23 bits)

• Double precision: 64 bits, consisting of…
• Sign bit (1 bit)

• Exponent (11 bits)

• Mantissa (52 bits)
sign S

1 11 52

exponent fraction

Normalized binary significand
with hidden bit (1): 1.M

E M

Normalization

• General form for floating-point numbers: (–1)S * (1+M) * 2E

• How do we represent zero?

• E = 0

• M = 0

Excess Notation

• To include positive (+ve) and negative (–ve)
exponents, “excess” notation is used

• Also called biased notation

• Represents the most negative exponent as
0...0two and the most positive exponent as 1…1two.

Single Precision (8-bit Exponent): 00000000 – 11111111 (0-255)

00000000

= -127

11111111

= 128
01111111

= 0

Excess Notation

• The value of the exponent stored is larger than
the actual exponent

• Single precision: excess 127

• Double precision: excess 1023

• Each real number is
(–1)S * (1 + Fraction) * 2(Exponent – Bias)

• E.g., excess 127,
• Exponent →

• Represents…

10000111

135 – 127 = 8

Example

• Single precision

0 10000010 11000000000000000000000

1.112

130 – 127 = 3

0 = positive mantissa

+1.112 x 23 = 1110.02 = 14.010

Converting from Floating Point

• What decimal value is represented by the following 32-bit

floating point number?

1100 0001 0111 1011 0000

0000 0000 00002

Converting from Floating Point

•Step 1: find S, E, and M

1 10000010 111101100000000000000002

S E M

1 = negative

0 = positive

Converting from Floating Point

•Step 2: Find “real” exponent, n

• n = E – 127

= 100000102 – 127

= 130 – 127

= 3

Converting from Floating Point

• Step 3: Put S, M, and n together to form

binary result

• Don’t forget the implied “1.” on the left of the

mantissa.

-1.11110112 x 2
n =

-1.11110112 x 2
3 =

-1111.10112

Converting from Floating Point

•Step 4: Express result in decimal

-1111.10112

-15
2-1 = 0.5

2-3 = 0.125

2-4 = 0.0625

0.6875

Answer: -15.6875

Converting to Floating Point

•Express 36.562510 as a 32-bit floating

point number

Converting to Floating Point

•Step 1: Express original value in

binary

36.562510 = 100100.10012

36 = 2 * 18 + 0

18 = 2 * 9 + 0

9 = 2 * 4 + 1

4 = 2 * 2 + 0

2 = 2 * 1 + 0

1 = 2 * 0 + 1

.5625 * 2 = 1.125

.125 * 2 = 0.25

.25 * 2 = 0.5

.5 * 2 = 1.0

.0 * 2 = 0.0

.0 * 2 = 0.0

.0 * 2 = 0.0

Converting to Floating Point

•Step 2: Normalize

100100.10012 = 1.0010010012 x 25

Converting to Floating Point

•Step 3: Determine S, E, and M

+1.0010010012 x 25

S = 0 (because the value is positive)

M
S

n
E = n + 127

= 5 + 127

= 132

= 100001002

Converting to Floating Point

•Step 4: Put S, E, and M together to

form 32-bit binary result

0 10000100 001001001000000000000002

S E M

Special Values

• Single Precision: Exponents of 0 and 255 have special
meaning
• E=0, M=0 represents 0 (sign bit still used so there is +/-0)

• E=0, M≠0 is a denormalised number (+/-0.Mx2-126) (smaller than
the smallest normalised number)

• E=255, M=0 represents +/- infinity

• E=255, M ≠ 0 represents NaN (not a number, e.g., returned for 0/0
or sqrt(-1))

Exponent Significand Value

0 0 0

0 nonzero denormalized number

1..emax-1 anything normal floating point number

emax 0 infinity

emax nonzero Not a Number (NaN)

Floating Point Operations

• Arithmetic:

• multiplication, division:

• multiply/divide mantissa

• add/subtract exponent

• example: 5.6x1011 x 6.7x1012 = 5.6 x 6.7 x 1023

• Addition, subtraction

• convert operands to have the same exponent value

• add/subtract mantissas

• example: 2.1x103 + 4.3x104 = 0.21 x 104 + 4.3 x 104

Basic Addition Algorithm

1. Align binary points (denormalize smaller number)

a. compute Diff = Exp(Y) – Exp (X);

b. Sig(X) = Sig(X) >> Diff

c. Exp = Exp(Y)

2. Add the aligned components

• Sig = Sig (x) + Sig (Y)

3. Normalize the sum

• Shift Sig right/left until leading bit is 1; decrementing
or incrementing Exp.

• Check for overflow in Exp

• Round (needs more bits, as we will see)

• repeat step 3 if not still normalized

Basic

Addition

Algorithm

Addition Example

11.0 + 6.0, 4-bit mantissa

1.0110 x 23 + 1.1000 x 22

1. Align binary points (denormalize smaller number)

1.0110 x 23

+0.1100 x 23

2. Add the aligned components

10.0010 x 23 (=17)

3. Normalize the sum

1.0001 x 24

• No overflow, no rounding

Basic Multiplication Algorithm

1. Compute exponents

• Multiplication: Exp = Exp (X) + Exp (Y) – bias;

• Division: Exp = Exp (X) – Exp(Y) + bias;

2. Multiply/Divide significands

• Multiplication: Sig = Sig (X) x Sig (Y);

• Division: Sig = Sig(X) / Sig(Y);

3. Normalize the product

• Shift Sig right until leading bit is 1; incrementing Exp.

• Check for overflow in Exp

• repeat step 3 if not still normalized

4. Round

• Any bits that do not fit must be discarded

5. Set sign

• positive if signs same; negative if signs differ

Basic

Multiplication

Algorithm

Multiplication Example

.5 * -.4375, 4-bit mantissa

1.0000two * 2–1 * – 1.1100two * 2–2

1. Compute exponents

-1 + (-2) = -3 With Bias: 126 + 125 – 127 = 124

2. Multiply/Divide significands

0111000000

3. Normalize the product

1.11000000 * 2–3

4. Round

1.1100 * 2–3

5. Set sign

-1.1100 * 2–3 because original signs differ

Multiplication Example

.5 * -.4375, 4-bit mantissa

1.0000two * 2–1 * – 1.1100two * 2–2

1. Compute exponents

-1 + (-2) = -3

2. Multiply/Divide significands

0111000000

3. Normalize the product

1.11000000 * 2–3

4. Round

1.1100 * 2–3

5. Set sign

-1.1100 * 2–3 because original signs differ

11100

x 10000

00000

00000

00000

00000

11100

111000000

Accuracy and Rounding

• Floating-point numbers are approximations for a number

they can’t really represent.

• Infinite possible real numbers between 0 and 1

• We can only represent 253 of them

• Approximate by rounding

Rounding Modes

• IEEE Standard has five rounding modes:

• round to nearest, ties to even (default)

• round to nearest, ties away from zero

• round towards plus infinity

• round towards minus infinity

• round towards 0

Rounding Hardware

• To round accurately, we need the hardware to include

extra bits for the calculation.

• Specifically, we keep 2 extra bits on the right

• Guard bit

• Round bit

Guard Bit

• The first bit to the right: an additional digit (bit) used in

intermediate calculations to prevent loss of accuracy.

Example for Guard Bit

8.5 – 3.75 = 4.75, 4-bit mantissa

1.0001x23 – 1.1110x21

1. Align binary point:
1.0001 x 23

-0.0111 x 23

2. Subtract the aligned components:
0.1010 x 23

3. Normalize:
1.0100 x 22

Note our answer is actually 5. With only 4-bits we are losing accuracy.
Our result would be off by 0.25 or a whole bit in the least significant
place.

Example for Guard Bit

8.5 – 3.75 = 4.75, 4-bit mantissa

1.0001x23 – 1.1110x21

1. Align binary point:

1.0001 x 23

-0.01111 x 23

g

2. Subtract the aligned components:

0.10011 x 23

g

3. Normalize:

1.0011 x 22

Now our normalized value is accurate

1.0011 x 22 = 4.75

Round Bit

• Bit to the right of guard bit needed for accurate rounding.

Example for Round Bit

• Example: 1.0000 x 20 - 1.0001 x 2–2

• guard and round bits shown

1.0000 x 20

- 0.010001 x 20

0.101111 x 20 Result

1.01111 x 2-1 Normalize

1.1000 x 2-1 Round; simple round up

• Without round bit, result is 1.0111

Sticky Bit

• Round to nearest problems

• need to know if actual result is closer to the next rounded value up

or the next rounded value down.

• With 4-bit significand, a result of 1.11011 could round to 1.1101 if

rounding down or 1.1110 if rounding up

• Potentially need a much greater number of bits

• Instead keep “sticky” bit (S):

• used to determine whether there are any 1 bits truncated below the

guard and round bits

• S=1 if any bits are off to the right, otherwise S=0

Example for Sticky Bit

• 1.0000 x 20 + 1.0001 x 2–5

• guard, round, and sticky bits shown

1.0000 x 20

+ 0.000010 x 20 1

1.000010 x 20 1 Result

1.0001 x 20 Round to nearest
Without S rounds to 1.0000.

Exceptions

• Invalid operation

• result of operation is a NaN (except = or !=)

• inf. +/- inf.; 0 * inf; 0/0; inf./inf.; x remainder y, y = 0;

• sqrt(x) where x < 0, x = +/- inf.

• Overflow

• result of operation is larger than largest representable

number

• flushed to +/- inf. if overflow exception is not enabled

Exceptions

• Divide by 0

• x/0 where x = 0, +/- inf.;

• flushed to +/- inf. if divide by zero exception not enabled

• Underflow

• subnormal result OR non-zero result underflows to 0

• Inexact

• rounded result not the actual result (rounding error = 0)

Exceptions

• IEEE Standard specifies defaults and allows traps to

permit exceptions to be handled at the program level

• contrast with the more usual result of aborting the

computation altogether.

