COMPUTER ARITHMETIC

Background Information

- Binary Numbers
- 2's Complement representation
- Addition
- Subtraction
- Arithmetic Logic Unit
- Contains Adders to perform addition and subtraction

Integer Multiplication

- "Paper and pencil" example

Multiplicand	1000
Multiplier	$\times 1001$
	1000
	0000
	0000
	+ 1000
Product	01001000

Shift after each step

Combinational Multiplier

- Partial product accumulation

			A3	A2	A1	A0
			B3	B2	B1	B0
			A3 B0	A2 B0	A1 B0	A0 B0
			A3 B1	A2 B1	A1 B1	A0 B1
		A3 B2	A2 B2	A1 B2	A0 B2	
	A3 B3	A2 B3	A1 B3	A0 B3		
S7	S6	S5	S4	S3	S2	S1
						S0

Combinational Multiplier

- Partial product accumulation

Note use of parallel carry-outs to form higher order sums
12 Adders, if full adders, this is $\mathbf{6}$ gates each = $\mathbf{7 2}$ gates
16 gates form the partial products
total = 88 gates

Integer Multiplication

- "Paper and pencil" example

Multiplicand	1000
Multiplier	$\times 1001$
	1000
	0000
	0000
	+ 1000
Product	01001000

Shift after each step

Observations

- Number of bits in the product is larger than the number in either the multiplicand or the multiplier.
- m bits $\times \mathrm{n}$ bits $=\mathrm{m}+\mathrm{n}$ bit product
- Overflow is a possible issue
- Binary rules - "choices"

$$
\begin{aligned}
& 0=>\text { place } 0 \\
& 1 \text { => place a copy }
\end{aligned}
$$

($0 \times$ multiplicand)
($1 \times$ multiplicand)

- 3 versions of unsigned multiplication hardware
- successive refinement

Multiplication

- Insight from paper and pencil algorithm
- Shift the multiplicand left one digit each step
- With 32 steps in a 32-bit number, we move 32 bits to the left
- Requires a 64-bit register
- Place 32 zeroes in the left half (unoccupied half)
- Unsigned numbers do not require sign extension
- Multiplicand will be added to the sum in the product register
- Product register will also be 64 bits
- Requires a 64 bit ALU to add

Multiplication Hardware Version 1

-64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg, 32bit multiplier reg

Figure 3.3 from text

Multiplication Algorithm Version 1

Figure 3.4 from text

Multiplication Example (11x9)

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	00001011	1001	Initialize
1	1a.	00001011	00001011	1001	Add
1	2,3	00001011	00010110	0100	Shifts
2	1	00001011	00010110	0100	Test-no add
2	2,3	00001011	00101100	0010	Shifts
3	1	00001011	00101100	0010	Test-no add
3	2,3	00001011	01011000	0001	Shifts
4	1 a.	01100011	01011000	0001	Add
4	2,3	01100011	10110000	0000	Shifts

Multiplication is Time Consuming

- 3 steps per iteration
- 32 iterations
- 96 steps total

Observations on Multiplication Version 1

- Half the bits of the multiplicand are always 0
-64-bit adder is wasted
- 0's inserted in right of multiplicand as shifted
- LSBs of product never changed once formed
- Instead of shifting the multiplicand to the left we can shift the product to the right
- Perform some steps in parallel

Multiplication Hardware Version 2

- 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg, 32-bit Multiplier reg

Figure from a previous version of the text

Multiplication
 Algorithm Version 2

1a. Add multiplicand to the left half of
the product and place the result in the left half of the Product register

Done
Figure from a previous version of the text

Multiplication Example (11x9)

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize

Multiplication Example (11x9)

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
				Test the LSB of multiplier	
			indicates Add		

Multiplication Example (11x9)

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
				1001	Add
				Add the left half of the product	
					to the multiplicand. Store in

Multiplication Example (11x9)

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
1	1a.	10110000	1011	1001	Add
					Add the left half of the product
					to the multiplicand. Store in

Multiplication Example (11x9)

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
1	1a.	10110000	1011	1001	Add
				Shift both the product and the multiplier to the right.	

Multiplication Example (11x9)

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
1	1a.	10110000	1011	1001	Add
1	2,3	01011000	1011	0100	Shifts
				Shift both the product and the multiplier to the right.	

Multiplication Example (11x9)

Iter.	Step	Product	Multiplicand	Multiplier	Action
0	0	00000000	1011	1001	Initialize
1	1a.	10110000	1011	1001	Add
1	2,3	01011000	1011	0100	Shifts
2	1	01011000	1011	0100	Test-no add
2	2,3	00101100	1011	0010	Shifts
3	1	00101100	1011	0010	Test-no add
3	2,3	00010110	1011	0001	Shifts
4	1 a.	11000110	1011	0001	Add
4	2,3	01100011	1011	0000	Shifts

Multiplication
 Algorithm Version 2

Figure from a previous version of the text

Multiplication Hardware Version 3

- 32-bit Multiplicand reg, 32-bit ALU, 64-bit Product reg, (no Multiplier reg)

Figure 3.5 from text

Multiplication Algorithm Version 3

Figure from a previous version of the text

Multiplication Example (11x9)

Iter.	Step	Product	Multiplicand	Action
0	0	$0000 \underline{1001}$	1011	Initialize
1	1 a .	10111001	1011	Add
1	2	01011100	1011	Shift
2	1	01011100	1011	Test-no add
2	2	00101110	1011	Shift
3	1	00101110	1011	Test-no add
3	2	00010111	1011	Shift
4	1 a .	11000111	1011	Add
4	2	01100011	1011	Shift

Note: Multiplier in Product Register is underlined

Multiplying by a Constant

- Some compilers replace multiplies by short constants with a series of shifts and adds. Because one bit to the left represents a number twice as large in base 2, shifting the bits left has the same effect as multiplying by a power of 2.
- Almost every compiler will perform the strength reduction optimization of substituting a left shift for a multiply by a power of 2.

Multiplying by a Constant

- Some compilers replace multiplies by short constants with a series of shifts and adds. Because one bit to the left represents a number twice as large in base 2, shifting the bits left has the same effect as multiplying by a power of 2.
- Almost every compiler will perform the strength reduction optimization of substituting a left shift for a multiply by a power of 2.
- 4 * $2=8$
- 0100 * $0010=1000$
- $0100 \ll 1=1000$

Multiplying by a Constant

- Some compilers replace multiplies by short constants with a series of shifts and adds. Because one bit to the left represents a number twice as large in base 2, shifting the bits left has the same effect as multiplying by a power of 2.
- Almost every compiler will perform the strength reduction optimization of substituting a left shift for a multiply by a power of 2.
- 2 * $4=8$
- 0010 * $0100=1000$
- $0010 \ll 2=1000$

Signed Multiplication

- So far, we have multiplied unsigned numbers
- What about signed multiplication?
- one solution: make both positive
- leave out the sign bit, run for 31 steps
- set sign bit negative if signs of inputs differ

Booth's Algorithm

- multiply two's complement signed numbers
- uses same hardware as before
- can also be used to reduce the number of steps

Insight for Booth's Algorithm

- Example: $2 \times 6=0010 \times 0110$:

$$
\begin{array}{lrl}
& 0010 \\
\mathbf{x} & 0110 & \\
+ & 0000 & \text { shift (0 in multiplier) } \\
+ & 0010 & \text { add (1 in multiplier) } \\
+00010 & \text { add (1 in multiplier) } \\
+0000 & \text { shift (} 0 \text { in multiplier) }
\end{array}
$$

- ALU can get same result in more than one way:
- $6 x=4 x+2 x$ or $6 x=-2 x+8 x$
- $111=1000-0001$
- $1111=10000-00001$
- 1111XXX = 10000XXX - 00001XXX

Insight for Booth's Algorithm

- Replace string of 1 s in multiplier with
- initially subtract when we see first 1 (from right)
- later, add when we see 0 at left end of the string of 1 s .
- Example

	0010	
\mathbf{x}	0110	
$\mathbf{+}$	0000	shift (0 in multiplier)
-	0010	subtract (first 1 in string)
$\mathbf{+}$	0000	shift (within string of 1 s$)$
$\mathbf{+}$	0010	add (end of string)

- Effectively: $2 \times 6=2 \times 8-2 \times 2$

Booth's Algorithm

\section*{middle of run end of run
 beginning of run
 | 0 | 1 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Current Right

Explanation
Beginning of a run of 1 s
Middle of a run of 1 s
End of a run of 1 s
Middle of a run of 0 s

Example 0001111000 0001111000
0001111000
0001111000

Booth's Algorithm

1. Depending on the current and previous bits, do one of the following:
00: Middle of a string of 0s, so no arithmetic operations.
01: End of a string of 1 s , so add the multiplicand to the left half of the product.
10: Beginning of a string of 1 s , so subtract the multiplicand from the left half of the product.
11: Middle of a string of 1 s , so no arithmetic operation.
2. As in the previous algorithm, shift the Product register right (arithmetic shift) 1 bit.

Booth's Example (-5 x -6)

- Multiplicand $=-6=1010 ;-$ Multiplicand $=6=0110$
- Multiplier $=-5=1011$

Iter.	Step	Product	Last	Action
0	0	$0000101(10)$	0	Initialize
1	1.10	$0110101(10)$	0	Start string: Subtract => Add 0110
1	2	0011 010(1 1)	1	Shift arithmetic
2	1.11	0011 010(1 1)	1	Middle string: nothing
2	2	0001 101(0 1)	1	Shift arithmetic
3	1.01	1011 101(0 1)	1	End string: add 1010
3	2	1101 110(10)	0	Shift arithmetic
4	1.10	0011 110(1 0)	0	Start string: Subtract => add 0110
4	2	00011110	1	Shift arithmetic

Notes: 1. Multiplier in Product Register is underlined.
2. Current/previous bits are in parentheses.
3. Previous bit is initialized to 0

Booth's Algorithm

- Originally for speed: Shifts are faster than add
- Key advantage today: Works properly for 2's complement numbers without requiring special fix for sign!

Division: Paper and Pencil

- "Paper and pencil" example
- $20 \div 6=3$ Remainder 2

Divisor	00011	Quotient
	110 10100	Dividend
	10	
	101	
	1010	
	- 110	
	1000	
	- 110	
	10	Remainde

Dividend = Quotient * Divisor + Remainder

Division: Paper and Pencil

- "Paper and pencil" example
- $20 \div 6=3$ Remainder 2

	00011	Quotient
Divisor	11010100	Dividend
	10	
	101	
	1010	
	- 110	
	1000	

Algorithm:
If Partial Remainder > Divisor
then Quotient bit = 1;
Remainder $=$ Remainder - Divisor
else Quotient bit $=0$
Shift down next dividend bit
10 Remainder

Division Hardware

- Same as Multiplication Hardware!
- 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg
- Dividend stored in remainder register, Quotient formed in remainder register

Figure 3.11 from text

Division Algorithm

Takes n Steps for n-bit Quotient and Remainder

Division Example

- Example: $14 \div 3=4$; remainder 2 .

Iter	Step Remainder	Divisor	Action	
0	0	0001	1100	0011
1	1	1110	1100	0011

Observations on Division Hardware

- Same Hardware as Multiply: just need ALU to add or subtract, and 64-bit register to shift left or shift right
- Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide

Signed Division

- Store the signs of the divisor and dividend
- Convert divisor and dividend to positive
- Complement quotient and remainder if necessary
- Dividend and Remainder are defined to have same sign
- Quotient negated if Divisor sign and Dividend sign disagree

Beyond Integers

- Real numbers
- Called "float" values
- Computer arithmetic that supports real numbers is called floating point arithmetic

Exponential Notation

- The following are equivalent representations of 1,234

123,400.0	x 10^{-2}
12,340.0	x 10^{-1}
1,234.0	$\times 10^{0}$
123.4	x $10{ }^{1}$
12.34	$\times 10^{2}$
1.234	$\times 10^{3}$
0.1234	x $10{ }^{4}$

The representations differ in that the decimal place - the "point" -"floats" to the left or right (with the appropriate adjustment in the exponent).

Standards

- Floats are implemented using the IEEE 754 standard
- found in virtually every computer invented since 1980
- has greatly improved both the ease of porting floating-point programs and the quality of computer arithmetic.
- IEEE 754 was created to:
- Simplify exchange of data that includes floating-point numbers
- Simplify the floating-point arithmetic algorithms
- Increases the accuracy of the numbers that can be stored
- Increased accuracy due to normalized scientific notation

Normalized Scientific Notation

- A number in scientific notation that has no leading $0 s$ is called a normalized number.
- $1.0_{\text {ten }}$ * 10^{-9} is in normalized scientific notation
- $0.1_{\text {ten }}$ * 10^{-8} is not normalized
- $10.0_{\text {ten }} * 10^{-10}$ is not in scientific notation

Floating Point: Scientific Notation

- Number represented as
- Mantissa
- Radix (base)
- Exponent

In a binary number, the radix (or base) is 2 instead of 10. The general form could be written as 1.xxxxxx * 2yyyy.

Floating Point: Normalized Scientific Notation

- The mantissa must be normalized: 1.xxxxxx * 2yyyy
- Always has a 1 in front of the binary point
- This 1 does not need to be stored
- Floating point numbers have an implied "1" on left of the decimal place
- Mantissa $\rightarrow 10100000000000000000000$
- Represents $\rightarrow 1.101_{2}=1.625_{10}$

IEEE 754 Standard

- Single precision: 32 bits, consisting of...
- Sign bit (1 bit)
- Exponent (8 bits)
- Mantissa (23 bits)

Normalized binary significand with hidden bit (1): 1.M

IEEE 754 Standard

- Single precision: 32 bits, consisting of...
- Sign bit (1 bit)
- Exponent (8 bits)
- Mantissa (23 bits)
- Fractions almost as small as $2.0_{\text {ten }}$ * 10^{-38}
- Numbers almost as large as $2.0_{\text {ten }}{ }^{*} 10^{38}$
- Overflow may still occur
- Exponent is too large to be represented
- Underflow may occur
- Exponent is too small to be represented

IEEE 754 Standard

- Single precision: 32 bits, consisting of...
- Sign bit (1 bit)
- Exponent (8 bits)
- Mantissa (23 bits)
- Double precision: 64 bits, consisting of...
- Sign bit (1 bit)
- Exponent (11 bits)
- Mantissa (52 bits)

Normalization

- General form for floating-point numbers: $(-1)^{\mathrm{S}}$ * $(1+\mathrm{M}){ }^{*} 2^{\mathrm{E}}$
- How do we represent zero?
- $\mathrm{E}=0$
- $M=0$

Excess Notation

- To include positive (+ve) and negative (-ve) exponents, "excess" notation is used
- Also called biased notation
- Represents the most negative exponent as $0 . . .0_{\text {two }}$ and the most positive exponent as $1 \ldots 1_{\text {two }}$.

Single Precision (8-bit Exponent): 00000000 - 11111111 (0-255)

00000000
$=-127$

01111111
$=0$

11111111
$=128$

Excess Notation

- The value of the exponent stored is larger than the actual exponent
- Single precision: excess 127
- Double precision: excess 1023
- Each real number is $(-1)^{\mathrm{S}}$ * $(1+$ Fraction $) * 2^{(\text {Exponent }- \text { Bias })}$
- E.g., excess 127,
- Exponent \rightarrow 10000111
- Represents... 135-127=8

Example

- Single precision

Converting from Floating Point

- What decimal value is represented by the following 32-bit floating point number?

$$
\begin{array}{lllll}
1100 & 0001 & 0111 & 1011 & 0000 \\
0000 & 0000 & 0000_{2} & &
\end{array}
$$

Converting from Floating Point

-Step 1: find S, E, and M

Converting from Floating Point

-Step 2: Find "real" exponent, n
-n = E-127

$$
\begin{aligned}
& =10000010_{2}-127 \\
& =130-127 \\
& =3
\end{aligned}
$$

Converting from Floating Point

- Step 3: Put S, M, and n together to form binary result
- Don't forget the implied "1." on the left of the mantissa.

$$
\begin{aligned}
& -1.1111011_{2} \times 2^{n}= \\
& -1.1111011_{2} \times 2^{3}= \\
& -1111.1011_{2}
\end{aligned}
$$

Converting from Floating Point

-Step 4: Express result in decimal

Answer: -15.6875

Converting to Floating Point

- Express 36.5625_{10} as a 32 -bit floating point number

Converting to Floating Point

-Step 1: Express original value in

 binary$$
36.5625_{10}=100100.1001_{2}
$$

$$
\begin{array}{ll}
36=2 * 18+0 & .5625 * 2=1.125 \\
18=2 * 9+0 & .125 * 2=0.25 \\
9=2 * 4+1 & .25 * 2=0.5 \\
4=2 * 2+0 & .5
\end{array}{ }^{*} 2=1.0
$$

Converting to Floating Point

- Step 2: Normalize

$$
100100.1001_{2}=1.001001001_{2} \times 2^{5}
$$

Converting to Floating Point

-Step 3: Determine S, E, and M

Converting to Floating Point

- Step 4: Put S, E, and M together to form 32-bit binary result

$$
\frac{0}{S} \frac{10000100}{E} \frac{00100100100000000000000_{2}}{M}
$$

Special Values

Exponent
 0
 0
 1.. $e_{\max }-1$
 $e_{\text {max }}$
 $\mathrm{e}_{\text {max }}$

- Single Precision: Exponents of 0 and 255 have special meaning
- $\mathrm{E}=0, \mathrm{M}=0$ represents 0 (sign bit still used so there is $+/-0$)
- $\mathrm{E}=0, \mathrm{M} \neq 0$ is a denormalised number ($+/-0 . \mathrm{Mx2} 2^{-126}$) (smaller than the smallest normalised number)
- $\mathrm{E}=255, \mathrm{M}=0$ represents +/- infinity
- $\mathrm{E}=255, \mathrm{M} \neq 0$ represents NaN (not a number, e.g., returned for 0/0 or sqrt(-1))

Floating Point Operations

- Arithmetic:
- multiplication, division:
- multiply/divide mantissa
- add/subtract exponent
- example: $5.6 \times 10^{11} \times 6.7 \times 10^{12}=5.6 \times 6.7 \times 10^{23}$
- Addition, subtraction
- convert operands to have the same exponent value
- add/subtract mantissas
- example: $2.1 \times 10^{3}+4.3 \times 10^{4}=0.21 \times 10^{4}+4.3 \times 10^{4}$

Basic Addition Algorithm

1. Align binary points (denormalize smaller number)
a. compute Diff $=\operatorname{Exp}(\mathrm{Y})-\operatorname{Exp}(\mathrm{X})$;
b. $\operatorname{Sig}(X)=\operatorname{Sig}(X) \gg$ Diff
c. $\operatorname{Exp}=\operatorname{Exp}(Y)$
2. Add the aligned components

- Sig = Sig (x) + Sig (Y)

3. Normalize the sum

- Shift Sig right/left until leading bit is 1 ; decrementing or incrementing Exp.
- Check for overflow in Exp
- Round (needs more bits, as we will see)
- repeat step 3 if not still normalized

Basic Addition Algorithm

Addition Example

$11.0+6.0,4$-bit mantissa
$1.0110 \times 2^{3}+1.1000 \times 2^{2}$

1. Align binary points (denormalize smaller number)

$$
\begin{array}{r}
1.0110 \times 2^{3} \\
+0.1100 \times 2^{3}
\end{array}
$$

2. Add the aligned components

$$
10.0010 \times 2^{3}(=17)
$$

3. Normalize the sum

$$
1.0001 \times 2^{4}
$$

- No overflow, no rounding

Basic Multiplication Algorithm

1. Compute exponents

- Multiplication: $\operatorname{Exp}=\operatorname{Exp}(\mathrm{X})+\operatorname{Exp}(\mathrm{Y})-$ bias;
- Division: $\operatorname{Exp}=\operatorname{Exp}(X)-\operatorname{Exp}(Y)+$ bias;

2. Multiply/Divide significands

- Multiplication: Sig = Sig (X) x Sig (Y);
- Division: Sig = Sig(X) / Sig(Y);

3. Normalize the product

- Shift Sig right until leading bit is 1 ; incrementing Exp.
- Check for overflow in Exp
- repeat step 3 if not still normalized

4. Round

- Any bits that do not fit must be discarded

5. Set sign

- positive if signs same; negative if signs differ

Basic
 Multiplication Algorithm

Multiplication Example

$.5^{*}-.4375,4$-bit mantissa
$1.0000_{\mathrm{two}}{ }^{*} 2^{-1 *}-1.1100_{\mathrm{two}}{ }^{*} 2^{-2}$

1. Compute exponents
$-1+(-2)=-3 \quad$ With Bias: $126+125-127=124$
2. Multiply/Divide significands 0111000000
3. Normalize the product
1.11000000 * 2^{-3}
4. Round
1.1100 * 2^{-3}
5. Set sign
-1.1100 * 2^{-3} because original signs differ

Multiplication Example

. 5 * -.4375, 4-bit mantissa
$1.0000_{\text {two }}{ }^{*} 2^{-1}$ * $-1.1100_{\text {two }}{ }^{*} 2^{-2}$

1. Compute exponents
$-1+(-2)=-3$
2. Multiply/Divide significands 0111000000
3. Normalize the product
1.11000000 * 2^{-3}

11100
$\times 10000$
00000
00000
00000
00000
1100
11000000

4. Round
1.1100 * 2^{-3}
5. Set sign
-1.1100 * 2^{-3} because original signs differ

Accuracy and Rounding

- Floating-point numbers are approximations for a number they can't really represent.
- Infinite possible real numbers between 0 and 1
- We can only represent 2^{53} of them
- Approximate by rounding

Rounding Modes

- IEEE Standard has five rounding modes:
- round to nearest, ties to even (default)
- round to nearest, ties away from zero
- round towards plus infinity
- round towards minus infinity
- round towards 0

Rounding Hardware

- To round accurately, we need the hardware to include extra bits for the calculation.
- Specifically, we keep 2 extra bits on the right
- Guard bit
- Round bit

Guard Bit

- The first bit to the right: an additional digit (bit) used in intermediate calculations to prevent loss of accuracy.

Example for Guard Bit

$8.5-3.75=4.75,4$-bit mantissa $1.0001 \times 2^{3}-1.1110 \times 2^{1}$

1. Align binary point:
1.0001×2^{3}
-0.0111×2^{3}
2. Subtract the aligned components: 0.1010×2^{3}
3. Normalize:
1.0100×2^{2}
Note our answer is actually 5 . With only 4 -bits we are losing accuracy. Our result would be off by 0.25 or a whole bit in the least significant place.

Example for Guard Bit

$8.5-3.75=4.75,4$-bit mantissa $1.0001 \times 2^{3}-1.1110 \times 2^{1}$

1. Align binary point:

$$
\begin{array}{cc}
1.0001 & \times 2^{3} \\
-0.01111 & \times 2^{3}
\end{array}
$$

2. Subtract the aligned components:
0.10011×2^{3}
3. Normalize:
1.0011×2^{2}
Now our normalized value is accurate $1.0011 \times 2^{2}=4.75$

Round Bit

- Bit to the right of guard bit needed for accurate rounding.

Example for Round Bit

- Example: $1.0000 \times 2^{0}-1.0001 \times 2^{-2}$
- guard and round bits shown

$$
\begin{aligned}
1.0000 \times 2^{0} & \\
- & 0.010001 \times 2^{0} \\
0.101111 \times 2^{0} & \text { Result } \\
1.01111 \times 2^{-1} & \text { Normalize } \\
1.1000 \times 2^{-1} & \text { Round; simple round up }
\end{aligned}
$$

- Without round bit, result is 1.0111

Sticky Bit

- Round to nearest problems
- need to know if actual result is closer to the next rounded value up or the next rounded value down.
- With 4-bit significand, a result of 1.11011 could round to 1.1101 if rounding down or 1.1110 if rounding up
- Potentially need a much greater number of bits
- Instead keep "sticky" bit (S):
- used to determine whether there are any 1 bits truncated below the guard and round bits
- $S=1$ if any bits are off to the right, otherwise $S=0$

Example for Sticky Bit

$.1 .0000 \times 2^{0}+1.0001 \times 2^{-5}$

- guard, round, and sticky bits shown
1.0000×2^{0}
$+\underline{0.000010 \times 2^{0}} 1$
1.000010×2^{0}
1.0001×2^{0}

Result

Round to nearest Without S rounds to 1.0000 .

Exceptions

- Invalid operation
- result of operation is a NaN (except = or !=)
- inf. +/- inf.; 0 *inf; 0/0; inf./inf.; x remainder y, y = 0;
- $\operatorname{sqrt}(x)$ where $x<0, x=+/-$ inf.
- Overflow
- result of operation is larger than largest representable number
- flushed to +/- inf. if overflow exception is not enabled

Exceptions

- Divide by 0
- x/0 where $x=0,+/-$ inf.;
- flushed to +/- inf. if divide by zero exception not enabled
- Underflow
- subnormal result OR non-zero result underflows to 0
- Inexact
- rounded result not the actual result (rounding error $=0$)

Exceptions

- IEEE Standard specifies defaults and allows traps to permit exceptions to be handled at the program level - contrast with the more usual result of aborting the computation altogether.

