
CDA 3103: Study Set 3
LATCHES, FLIP-FLOPS, REGISTERS, TIMING METHODOLOGY,
SEQUENTIAL LOGIC DESIGN, SYNCHRONOUS SYSTEMS

Review: Sequential Logic
◦ Sequential Circuits are made up of the same pieces as combinational circuits: wires and gates.

The primary difference is the sequential circuits have “States” implemented with a feedback
loop. If you provide inputs 1, 1, and 0 to combinational circuit and receive as output 0; then
the next time you provide the same circuit inputs 1, 1, and 0 you are guaranteed to receive
the same output 0.

◦ In a sequential circuit, this is not guaranteed. Outputs may differ based on the state of the
circuit and outputs may differ based on the previous results of the circuit.

Review: Set-Reset Latch
◦ The Set-Reset Latch is a sequential element that produces an output based on the current

state of the latch. If the latch is in the Set state, the output is 1. If the latch is in the Reset
state, the output is 0. If the latch is the Hold state, then the output is the same as the most
recent previous state.

◦ The Set-Reset Latch is said to be “event driven” in that the state changes as soon as the
inputs R and S change.

R

S

Q

Q'

<- The diagram we use in class
shows the latch built from cross-
coupled NOR gates.
-> It can also be built of cross-
coupled NAND gates as these two
gates are universal. Note how the
inputs need to modified to
preserve the behavior of the latch.

© www.electronics-tutorials.ws

Example: Set-Reset Latch
In the following truth table, indicate which inputs correspond to which states for the Set-Reset
latch. Suppose the latch is in the Set state and we want to move it to the Reset state, instead.
Explain how this scenario might lead us to an unstable state. How can we recover from an
unstable state?

The Set-Reset Latch has three defined states and one
unstable state. The state depends on the combination of
inputs.

Truth Table

S R State

0 0 __hold__

0 1 __reset__

1 0 __set__

1 1 __unstable__

Given:

Partial
Credit 1:

Solution 1:

Example: Set-Reset Latch
In the following truth table, indicate which inputs correspond to which states for the Set-Reset
latch. Suppose the latch is in the Set state and we want to move it to the Reset state, instead.
Explain how this scenario might lead us to an unstable state. How can we recover from an
unstable state?

The Set-Reset Latch is event driven which means the state changes as soon as the inputs change.

If the current state is Set, that means input S is 1 and input R is 0. If we want to switch to the
Reset state, S must be changed to 0 and R must be change to 1. If R changes first the inputs to
the Latch will be 1 and 1 which indicates an unstable state.

Given:

Partial
Credit 2:

Solution 2:

Example: Set-Reset Latch
In the following truth table, indicate which inputs correspond to which states for the Set-Reset
latch. Suppose the latch is in the Set state and we want to move it to the Reset state, instead.
Explain how this scenario might lead us to an unstable state. How can we recover from an
unstable state?

An unstable state occurs when the Latch receives 1 for both of it’s inputs. If we try to hold an
unstable state, the latch begins to oscillate between 1 and 0 for it’s outputs even thought the
inputs are unchanging.

To exit an unstable state, we need to supply either a Set input or a Reset input. This will force
the latch into the corresponding state and the latch will stabilize.

Given:

Partial
Credit 3:

Solution 3:

Review: Clocks
o Clocks are regular periodic signals and the clock period is divided into two portions
oWhen the clock is “high” (when the signal is asserted or 1) and when the clock is “low” (deasserted or 0)

o The transition from low to high is called the rising edge or positive edge

o The transition from high to low is called the falling edge or negative edge

o One of these edges is deemed the “active” edge for the system, the other is the offset edge

o We use the clock signal in conjunction with certain gates to control when circuits receive their inputs.
Circuits that receive inputs based on the active edge of the clock are said to be synchronous.

Review: Timing Methodology
oWe primarily assume positive-edge triggered timing methodology, which means the rising edge
or the positive edge is considered the active edge. All inputs and outputs must be stable for a
certain period of time around the active edge. These signals are allowed to change and stabilize
during the rest of the clock period.

Example: Clocked Set-Reset Latch
Construct a Set-Reset Latch that is synchronous to prevent accidental occurrences of the
unstable state.

We can prevent the Set-Reset Latch from accidentally reaching an unstable state by controlling
when the Set and Reset signals arrive. To do this, we need a clock and some additional gates.
Let’s start by building a truth table for the Set signal.

We only want to send S to the Latch when the clock is
asserted. When clock is deasserted, we should send a
signal that will not harm the Latch. 0 is a safe signal to send
since it takes two 1’s to enter an unstable state. When the
clock is asserted, we want to send the value of S through.

This truth table is equivalent to S AND Clock.

Given:

Partial
Credit 1:

Solution 1:

Truth Table

S Clock S

0 0 __0__

0 1 __0__

1 0 __0__

1 1 __1__

Example: Clocked Set-Reset Latch
Construct a Set-Reset Latch that is synchronous to prevent accidental occurrences of the
unstable state.

We can also build a truth table for Reset.

The logic for Reset is the same as the logic for Set, so we end
up with a similar truth table.

This truth table is equivalent to R AND Clock.

Given:

Partial
Credit 2:

Solution 2:

Truth Table

R Clock R

0 0 __0__

0 1 __0__

1 0 __0__

1 1 __1__

Example: Clocked Set-Reset Latch
Construct a Set-Reset Latch that is synchronous to prevent accidental occurrences of the
unstable state.

This tells us the circuit can be controlled with the clock signal and two AND gates.

This is one implementation of a clocked Set-Reset
Latch. Other implementations include only NOR
gates and only NAND gates.

Given:

Partial
Credit 3:

Solution 3:

Review: Flip-Flops
oThe Data Flip-Flop or D Flip-Flop is a memory element that holds a single bit. This bit may be
updated only on the active clock edge. It is build from a clocked latch, where the clock and it’s
additional gates are arranged in a way that prevents the unstable state from being sent to the
latch. The result is that the output Q becomes equal to D whenever the clock is asserted.

Review: Synchronizers
oSome inputs within computing systems are, by necessity, asynchronous. To maintain a
synchronous system, we need to pass these inputs through a synchronizer. The clock signal
associated with Flip-Flops controls when these inputs are admitted to the rest of the system.

Review: Registers
oFlip-Flops may be combined in many different ways to create sequential hardware. We can
create pattern recognizers, counters, shifters, and registers. The data register we will be using
on our data path is comprised of 32 flip-flops joined with similar controls and logic.

Example: Grey-Code Counter
Construct a two-bit Grey-Code counter using D flip-flops and associated logic gates.

Grey Code is unique counting system in which only one bit can change from one bit to the next.
If we have two bits to work with our number sequence will be 00, 01, 11, 10. Our counter
should cycle through this sequence.

A two-bit counter will require two flip-flops and
some associated logic. A truth table will help us
see the relationship between the current number
of the sequence and the next number to be
produced.

Given:

Partial
Credit 1:

Solution 1:

Truth Table

Current Bit1 Current Bit0 Next Bit1 Next Bit0

0 0 0 1

0 1 1 1

1 0 0 0

1 1 1 0

Example: Grey-Code Counter
Construct a two-bit Grey-Code counter using D flip-flops and associated logic gates.

Now we can construct the equations for each bit.

Next Bit1 represents the more significant of the
two bits. Next Bit1 = Current Bit0. The more
significant of the two bits should be equal to the
less significant of the two bits from the previous
number in the sequence.

Given:

Partial
Credit 2:

Solution 2:

Truth Table

Current Bit1 Current Bit0 Next Bit1 Next Bit0

0 0 0 1

0 1 1 1

1 0 0 0

1 1 1 0

Example: Grey-Code Counter
Construct a two-bit Grey-Code counter using D flip-flops and associated logic gates.

Now we can construct the equations for each bit.

Next Bit0 represents the less significant of the
two bits. Next Bit0 = Current Bit1’. The less
significant of the two bits should be equal to the
negation of the more significant of the two bits
from the previous number in the sequence.

Given:

Partial
Credit 3:

Solution 3:

Truth Table

Current Bit1 Current Bit0 Next Bit1 Next Bit0

0 0 0 1

0 1 1 1

1 0 0 0

1 1 1 0

Example: Grey-Code Counter
Construct a two-bit Grey-Code counter using D flip-flops and associated logic gates.

Now we can construct the diagram for the counter:
Next Bit1 = Current Bit0.
Next Bit0 = Current Bit1’.

Given:

Partial
Credit 4:

Solution 4:

