COMBINATIONAL LOGIC DESIGN

Digital Systems

- Digital electronics operate with only two voltage levels of interest: a high voltage and a low voltage. All other voltage values are temporary and occur while transitioning between the values.

Digital Systems

- Low voltage is associated with 0s
- High voltage is associated with 1s
- The actual voltage values may differ from system to system

Logic Blocks and Block Diagrams

- Computational "blocks" perform a set of logical functions in either a combinational or sequential fashion.

- A block diagram is a simple model of these systems that shows only the inputs and outputs.

Combinational vs. Sequential

- Combinational:
- No Feedback
- Output defined completely in terms of the Inputs.
- Sequential:
- With feedback
- System goes through different states
- New state depends on Inputs and current state.

Combinational logic

- Truth Tables, Logic Equations, and Gates
- NOT, AND, OR, NAND, NOR, XOR, ...
- Minimal set
- Axioms and theorems of Boolean algebra
- Proofs by re-writing
- Proofs by perfect induction
- Gate logic
- Networks of Boolean functions
- Time behavior
- Canonical forms
- Two-level
- Incompletely specified functions
- Simplification
- Boolean cubes and Karnaugh maps
- Two-level simplification

Truth Tables

- Combinational logic blocks can be completely specified by defining the output values for each possible set of input values.
- This is done using a truth table.
- For a logic block with n inputs, there are 2^{n} entries in the truth table. Each entry specifies the value of all the outputs for that particular input combination.

Possible Logic Functions

- If there are 2 input variables, there should be $2^{2}=4$ entries in the truth table.

- How many different functions of 2 input variables can we make?

Possible Logic Functions

- There are 16 possible functions of 2 input variables
- In general, there are $2^{2^{n}}$ functions of n inputs

Truth Tables

- Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F. The function is defined as follows:
- D is true if at least one input is true
- E is true if exactly two inputs are true
- F is true only if all three inputs are true.

Truth Tables

- Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F. The function is defined as follows:
- D is true if at least one input is true
- E is true if exactly two inputs are true
- F is true only if all three inputs are true.

A	Inputs	Outputs		
0	\mathbf{B}	\mathbf{C}	\mathbf{E}	
0	0	0		
0	0	1		
0	1	0		
1	1	1		
1	0	0		
1	0	1		
1	1	0		

Truth Tables

- Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F. The function is defined as follows:
- D is true if at least one input is true
- E is true if exactly two inputs are true
- F is true only if all three inputs are true.

	Inputs		Outputs	
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	

Truth Tables

- Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F. The function is defined as follows:
- D is true if at least one input is true
- E is true if exactly two inputs are true
- F is true only if all three inputs are true.

| | Inputs | | Outputs | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{D} | \mathbf{E} |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | |

Truth Tables

- Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F. The function is defined as follows:
- D is true if at least one input is true
- E is true if exactly two inputs are true
- F is true only if all three inputs are true.

	Inputs		Outputs		
A	\mathbf{B}	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Boolean Algebra

- Deals with a set of variables (operands) combined with a set of operators.
- Variables denoted by X, Y, Z, etc.
- Variables take binary values:

Either " 0 " or " 1 " ("false" or "true")

- Operators: NOT, AND, OR
- All logical operations can be described using these three operators.

OR

- The OR operator is written as + , as in $A+B$.

\mathbf{A}	\mathbf{B}	$\mathbf{A}+\mathrm{B}$ (OR)
0	0	0
0	1	1
1	0	1
1	1	1

- The OR operation is also called a logical sum.

AND

- The AND operator is written as *, as in A * B.

\mathbf{A}	\mathbf{B}	$\mathbf{A} * \mathbf{B}$ (AND)
0	0	0
0	1	0
1	0	0
1	1	1

- The AND operation is also called a logical product.

NOT

- The unary operator NOT is written as A^{\prime}.

A	\mathbf{A}^{\prime}
0	1
1	0

Axioms and theorems of Boolean algebra

- Identity
- $x+0=x$
- $X \cdot 1=X$
- Null
- $X+1=1$
- $X \cdot 0=0$
- Idempotency:

$$
\begin{aligned}
& \text { - } X+X=X \\
& \text { - } X \cdot X=X
\end{aligned}
$$

- Involution:
- (X')' = X
- $X+X^{\prime}=1$
- $X \cdot X^{\prime}=0$
- Commutative:
- $X+Y=Y+X$
- $X \cdot Y=Y \cdot X$
- Associativity:

$$
\begin{array}{ll}
\cdot & (X+Y)+Z=X+(Y+Z) \\
\cdot & (X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)
\end{array}
$$

- Inverse:
$X \cdot Y=Y$ •X

Axioms and theorems of Boolean algebra

- Distributivite:

$$
\begin{aligned}
\cdot & X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z) \\
\cdot & X+(Y \cdot Z)=(X+Y) \cdot(X+Z)
\end{aligned}
$$

- Uniting:
- $X \cdot Y+X \cdot Y^{\prime}=X$
- $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$
- Absorption:
- $X+X \cdot Y=X$
- $X \cdot(X+Y)=X$
- $\left(X+Y{ }^{\prime}\right) \cdot Y=X \cdot Y$
- $\left(X \cdot Y^{\prime}\right)+Y=X+Y$

Axioms and theorems of Boolean algebra

- Factoring:

```
- \((X+Y) \cdot\left(X^{\prime}+Z\right)=X \cdot Z+X \cdot Y\)
- \(X \cdot Y+X^{\prime} \cdot Z=(X+Z) \cdot(X ' Y)\)
```

- Consensus:
- $(X \cdot Y)+(Y \cdot Z)+(X \cdot Z)=X \cdot Y+X \cdot Z$
- $(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=(X+Y) \cdot\left(X^{\prime}+Z\right)$
- de Morgan's:

$$
\begin{aligned}
\text { • } & (X+Y+\ldots)^{\prime}=X^{\prime} \cdot Y^{\prime} \bullet \ldots \\
\text { - } & (X \cdot Y \cdot \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots
\end{aligned}
$$

Logic functions and Boolean algebra

- Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and \cdot

X	y	X^{\prime}	y^{\prime}	$\mathrm{X} \cdot \mathrm{y}$	$\mathrm{X}^{\prime} \cdot \mathrm{y}^{\prime}$	$(\mathrm{X}$
0	0	1	1	0	1	1
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	1	0	0	1	0	1

X, Y are Boolean algebra variables

Boolean expression that is true when the variables X and Y have the same value and false, otherwise

Logic functions and Boolean algebra

- D is true if at least one input is true
- E is true if exactly two inputs are true
- F is true only if all three inputs are true.

	Inputs	Outputs			
A	B	C	D	F	
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	0	1	

- $D=A+B+C$
- $F=A * B * C$
- $E=((A * B)+(A * C)+(B * C)) *(A * B * C)$,
- $E=\left(A * B * C^{\prime}\right)+\left(A * C * B^{\prime}\right)+\left(B * C * A^{\prime}\right)$

Proving theorems with Perfect Induction

- Using perfect induction (complete truth table):
- e.g., de Morgan's:

$$
(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}
$$

NOR is equivalent to AND with inputs complemented

$$
(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}
$$

NAND is equivalent to $O R$ with inputs complemented

x	y	x^{\prime}	y^{\prime}	$(x+y)^{\prime}$	$x^{\prime} \cdot y^{\prime}$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Proving theorems with Perfect Induction

- $E=((A * B)+(A * C)+(B * C))$ * $(A * B * C)$,
- $E=\left(A^{*} B^{*} C^{\prime}\right)+\left(A^{*} C\right.$ * $\left.B^{\prime}\right)+\left(B^{*} C\right.$ * $\left.A^{\prime}\right)$

Inputs

A B C E	$((A * B)+(A * C)+$	$\left(A * B * C C^{\prime}\right)+(A * C * B)+$
$(B * C)) *(A * B * C)$	$\left(B * C * A^{\prime}\right)$	

0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	0	0	0

Proving theorems with Rewriting

- Using the axioms of Boolean algebra:
- e.g., prove the theorem:

$$
\begin{aligned}
X \cdot Y+X \cdot Y^{\prime} & =X \\
X \cdot Y+X \cdot Y^{\prime} & =X \cdot\left(Y+Y^{\prime}\right) \\
X \cdot\left(Y+Y^{\prime}\right) & =X \cdot(1)
\end{aligned}
$$ Identity law

- e.g., prove the theorem:

$$
X+X \cdot Y \quad=X
$$

Proving theorems with Rewriting

- $E=((A * B)+(A * C)+(B * C)) *(A * B * C)$,
- $E=\left(A * B * C^{\prime}\right)+\left(A * C * B^{\prime}\right)+\left(B * C * A^{\prime}\right)$
$((A$ * $B)+(A * C)+(B * C))$ * $(A$ * $B * C))^{\prime}$
$=\left(\left(A^{*} B\right)+\left(A^{*} C\right)+\left(B^{*} C\right)\right) *\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$
DeMorgan's law
$=\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\left(A^{*} B\right)+\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\left(A^{*} C\right)+\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\left(B^{*} C\right)$
Distributive law
$=\left(A^{*} B^{*} A^{\prime}\right)+\left(A^{*} B^{*} B^{\prime}\right)+\left(A^{*} B^{*} C^{\prime}\right)+\left(A^{*} C^{*} A^{\prime}\right)+\left(A^{*} C^{*} B^{\prime}\right)+\left(A^{*} C^{*} C^{\prime}\right)+$
$\left(B^{*} C^{*} A^{\prime}\right)+\left(B^{*} C^{*} B^{\prime}\right)+\left(B^{*} C^{\star} C^{\prime}\right)$
Distributive law

$$
\begin{aligned}
& =\left(0^{*} \mathrm{~B}\right)+\left(0^{*} \mathrm{~A}\right)+\left(\mathrm{A}^{*} \mathrm{~B}^{\star} \mathrm{C}^{\prime}\right)+\left(0^{*} \mathrm{C}\right)+\left(\mathrm{A}^{*} \mathrm{C}^{\star} \mathrm{B}^{\prime}\right)+\left(\mathrm{A}^{\star} 0\right)+\left(\mathrm{B}^{\star} \mathrm{C}^{*} \mathrm{~A}^{\prime}\right)+\left(\mathrm{C}^{\star} 0\right)+\left(\mathrm{B}^{*} 0\right) \\
& \text { Inverse law } \\
& =0+0+\left(\mathrm{A}^{\star} \mathrm{B}^{\star} \mathrm{C}^{\prime}\right)+0+\left(\mathrm{A}^{\star} \mathrm{C}^{\star} \mathrm{B}^{\prime}\right)+0+\left(\mathrm{B}^{\star} \mathrm{C}^{\star} \mathrm{A}^{\prime}\right)+0+0 \\
& \quad \text { Null law } \\
& =\left(A \cdot B \cdot C^{\prime}\right)+\left(A \cdot C \cdot B^{\prime}\right)+\left(B \cdot C \cdot A^{\prime}\right) \\
& \quad \text { Identity law }
\end{aligned}
$$

Adder, Part 1

- 1-bit binary adder
- inputs: A, B, Carry-in
- outputs: Sum, Carry-out

		Cin	B	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{aligned}
& \Sigma=A^{\prime} B^{\prime} C \text { in }+A^{\prime} B C i n^{\prime}+A B^{\prime} C i n '+A B C \text { in } \\
& \text { Cout }=A^{\prime} B C \text { in }+A B^{\prime} C \text { in }+A B C \text { in }+A B C \text { in }
\end{aligned}
$$

Apply the theorems to simplify expressions

The theorems of Boolean algebra can simplify Boolean expressions

- The Cout function is used as an example here, but the same rules apply to any function.

Cout	A^{\prime}
(Idempotency)	$=A^{\prime} B C$ in $+A B^{\prime} C$ in $+A B C i n ' 1 ~+A B C i n+A B C i n$
(Commutative)	$A^{\prime} B C i n+A B C i n+A B^{\prime} C$ in $+A B C i n ' 1 ~ A B ~$
(Distributive)	$\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
(Inverse)	(1) $B C$ in $+A B^{\prime} C$ in $+A B C i n '+A B C i n$
(Idempotency)	
(Commutative)	$B C$ in $+A B^{\prime} C$ in $+A B C i n+A B C i n '+A B C i n$
(Distributive)	$B C$ in + A ($\left.B^{\prime}+B\right) C i n+A B C i n ' t a B C i n$
(Inverse)	$B C$ in $+A(1) C i n+A B C i n '+A B C i n$
(Distrivutive)	
(Inverse)	$=B C i n+A C i n+A B(1)$
	$B C$ in $+A C i n+A B$

Logic Gates

- NOT $X^{\prime} \bar{x} \sim x$
$x-D o-y$

\mathbf{x}	y	\mathbf{z}
0	0	0
0	1	0
1	0	0
1	1	1

\mathbf{x}	y	\mathbf{Z}
0	0	0
0	1	1
1	0	1
1	1	1

Logic Gates and Inverters

- Rather than draw inverters explicitly, a common practice is to add "bubbles" to the inputs or outputs of a gate to cause the logic value on that input line or output line to be inverted.

Logic Gates

- NAND
- NOR
- XOR
$X \oplus Y$
- XNOR
$\bar{X} \oplus \mathrm{Y}$

X	y	Z	$X x \operatorname{xor} y=X Y^{\prime}+X^{\prime} y$
0	0	0	X or y but not both

x	y	Z
0	0	1
0	1	0
1	0	0
1	1	1

X and Y are the same ("equality", "coincidence")

Adder, Part 2

- Logic gates for Sum (shown without Cin)

| A | B | Sum |
| :--- | :--- | :--- |\quad Sum $=A^{\prime} B+A B^{\prime}$

Adder, Part 2

- Logic gates for Cout (shown without Cin)

A	B	Cout
0	0	0
1	0	0
0	1	0
1	1	1

Cout $=A B$

Adder, Part 2

- Logic gates for Sum and Cout (shown without Cin)

Logic Gates

- More than one way to map expressions to gates

$$
\text { - e.g., } Z=A^{\prime} \cdot B^{\prime} \cdot(C+D)=\left(A^{\prime} \cdot \frac{\left(B^{\prime} \cdot(C+D)\right)}{T 1}\right.
$$

Different realizations of a function

two-level realization (we don't count NOT gates)

Which realization is best?

- Reduce number of inputs
- literal: input variable (complemented or not)
- can approximate cost of logic gate as 2 transistors per literal
- why not count inverters?
- Fewer literals means less transistors
- smaller circuits and reduced electric connections
- Fewer inputs implies faster gates
- gates are smaller and thus also faster
- Fan-ins (\# of gate inputs) are limited in some technologies
- Reduce number of gates
- Fewer gates (and the packages they come in) means smaller circuits

Which realization is best?

- Reduce number of levels of gates
- Fewer level of gates implies reduced signal propagation delays
- Minimum delay configuration typically requires more gates
- wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
- Automated tools to generate different solutions
- Logic minimization: reduce number of gates and complexity
- Logic optimization: reduction while trading off against delay

Canonical forms

- Any logic function can be implemented with only AND, OR, and NOT functions.
- Any logic function can be written in canonical form, where every input is either a true or complemented variable and there are only two levels of gates
- AND and OR

Canonical forms

- Truth table is the unique signature of a Boolean function
- Many alternative gate realizations may have the same truth table
- Canonical forms
- Standard forms for a Boolean expression
- Provides a unique algebraic signature

Canonical forms

- These are called two-level representations
- sum of products
- A logical sum (OR) of products (terms using the AND operator)
- product of sums
- A logical product (AND) of sums (terms using the OR operator)

Logic functions in Canonical Form

- D is true if at least one input is true
- E is true if exactly two inputs are true
- F is true only if all three inputs are true.

Inputs			Outputs		
A	B	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

- $D=A+B+C$
- $F=A * B * C$
- $E=((A * B)+(A * C)+(B * C)) *(A * B * C)$,
- $E=\left(A * B * C^{\prime}\right)+\left(A^{*} C * B \prime\right)+\left(B * C * A^{\prime}\right)$

Product of Sums
Sum of Products
Non-canonical
Sum of Products

Sum-of-products canonical form

- Also known as disjunctive normal form
- Also known as minterm expansion

Sum-of-products canonical form

- Product term (or minterm)

- ANDed product of literals - input combination for which output is true
- Each variable appears exactly once, in true or inverted form (but not both)

A	B	C	minterms
0	0	0	$A^{\prime} B^{\prime} C^{\prime} \mathrm{mo}$
0	0	1	$A^{\prime} B^{\prime} C \mathrm{~m} 1$
0	1	0	$A^{\prime} B C^{\prime} \mathrm{m} 2$
0	1	1	$A^{\prime} B C \mathrm{~m} 3$
1	0	0	$A B^{\prime} C^{\prime} \mathrm{m} 4$
1	0	1	$A B^{\prime} C$ m5
1	1	0	$A B C^{\prime} \mathrm{m} 6$
1	1	1	$A B C \quad \mathrm{~m} 7$

short-hand notation for minterms of 3 variables
F in canonical form:

$$
\begin{aligned}
F(A, B, C) & =\Sigma m(1,3,5,6,7) \\
& =m 1+m 3+m 5+m 6+m 7 \\
& =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C
\end{aligned}
$$

canonical form \neq minimal form

$$
\begin{aligned}
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime} \\
& =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\
& =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\
& =C+A B C^{\prime} \\
& =A B C^{\prime}+C \\
& =A B+C
\end{aligned}
$$

Sum-of-products canonical form

Inputs

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

Output

Sum-of-products canonical form

	Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

- $A^{\prime *} B^{\prime *} C$

Sum-of-products canonical form

Inputs		Output	
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$

- $A^{\prime *} B^{\prime *} C$
- $A^{\prime} * B * C^{\prime}$

Sum-of-products canonical form

	Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

- $A^{\prime *} B^{\prime *}$ C
- A^{\prime} * $B{ }^{*} C^{\prime}$
- $A^{*} B^{\prime *} C^{\prime}$

Sum-of-products canonical form

A	Inputs	Output	
0	B	C	D
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
1	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0

- $A^{\prime *} B^{\prime *} C$
- $A^{\prime} * B{ }^{*} C^{\prime}$
- $A * B{ }^{*} C^{\prime}$
- $A * B * C$

Sum-of-products canonical form

| | Inputs | | Output |
| :--- | :--- | :--- | :--- | :--- |
| \mathbf{A} | B | C | D |
| 0 | 0 | 0 | $\mathbf{0}$ |
| 0 | 0 | 1 | $\mathbf{1}$ |
| 0 | 1 | 0 | $\mathbf{1}$ |
| 0 | 1 | 1 | $\mathbf{0}$ |
| 1 | 0 | 0 | $\mathbf{1}$ |
| 1 | 0 | 1 | $\mathbf{0}$ |
| 1 | 1 | 0 | $\mathbf{0}$ |
| 1 | 1 | 1 | $\mathbf{1}$ |

- $D=\left(A^{\prime} * B^{\prime} * C\right)+\left(A^{\prime} * B * C^{\prime}\right)+\left(A * B^{\prime} * C^{\prime}\right)+(A * B * C)$

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion

Product-of-sums canonical form

- Sum term (or maxterm)

- ORed sum of literals - input combination for which output is false
- each variable appears exactly once, in true or inverted form (but not both)

A	B	C	maxterms	
0	0	0	$A+B+C$	$M 0$
0	0	1	$A+B+C^{\prime}$	$M 1$
0	1	0	$A+B^{\prime}+C$	$M 2$
0	1	1	$A+B^{\prime}+C^{\prime}$	$M 3$
1	0	0	$A^{\prime}+B+C$	$M 4$
1	0	1	$A^{\prime}+B+C^{\prime}$	$M 5$
1	1	0	$A^{\prime}+B^{\prime}+C$	$M 6$
1	1	1	$A^{\prime}+B^{\prime}+C^{\prime}$	$M 7$

short-hand notation for maxterms of 3 variables
F in canonical form:

$$
\begin{aligned}
F(A, B, C) & =\Pi M(0,2,4) \\
& =M 0 \cdot M 2 \cdot M 4 \\
& =(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
\end{aligned}
$$

canonical form \neq minimal form

$$
\begin{aligned}
F(A, B, C)= & (A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\
= & (A+B+C)\left(A+B^{\prime}+C\right) \\
& (A+B+C)\left(A^{\prime}+B+C\right) \\
= & (A+C)(B+C)
\end{aligned}
$$

Product-of-sums canonical form

Inputs

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

Output

Product-of-sums canonical form

	Inputs		
\mathbf{A}	\mathbf{B}	C	Output
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
1	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$

- $A+B+C$

Product-of-sums canonical form

	Inputs		Output
\mathbf{A}	B	C	D
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	1
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

- $A+B+C$
- $A+B^{\prime}+C^{\prime}$

Product-of-sums canonical form

	Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

- $A+B+C$
- $A+B^{\prime}+C^{\prime}$
- $A^{\prime}+B+C^{\prime}$

Product-of-sums canonical form

Inputs			Output
A	B	C	D
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- $A+B+C$
- $A+B^{\prime}+C^{\prime}$
- $A^{\prime}+B+C^{\prime}$
- $A^{\prime}+B^{\prime}+C$

Product-of-sums canonical form

| | Inputs | | Output |
| :--- | :--- | :--- | :--- | :--- |
| \mathbf{A} | B | C | D |
| 0 | 0 | 0 | $\mathbf{0}$ |
| 0 | 0 | 1 | $\mathbf{1}$ |
| 0 | 1 | 0 | $\mathbf{1}$ |
| 0 | 1 | 1 | $\mathbf{0}$ |
| 1 | 0 | 0 | $\mathbf{1}$ |
| 1 | 0 | 1 | $\mathbf{0}$ |
| 1 | 1 | 0 | $\mathbf{0}$ |
| 1 | 1 | 1 | $\mathbf{1}$ |

- $D=(A+B+C)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)$

Four alternative two-level implementations of $F=A B$

$+\mathrm{C}$

Mapping between canonical forms

- Minterm to maxterm conversion
- Use maxterms whose indices do not appear in minterm expansion
- e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7)=\Pi M(0,2,4)$
- Maxterm to minterm conversion
- Use minterms whose indices do not appear in maxterm expansion
- e.g., $F(A, B, C)=\Pi M(0,2,4)=\Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F^{\prime}
- Use minterms whose indices do not appear
- e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7) \quad F^{\prime}(A, B, C)=\Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F^{\prime}
- Use maxterms whose indices do not appear
- e.g., $F(A, B, C)=\Pi M(0,2,4) \quad F^{\prime}(A, B, C)=\Pi M(1,3,5,6,7)$

S-o-P, P-o-S, and

de Morgan's theorem

- Sum-of-products
- $F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
- Apply de Morgan's
- ($\left.F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
- $F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
- Product-of-sums
- $\mathrm{F}^{\prime}=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)$
- Apply de Morgan's
- $\left(F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$
- $F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C '+A B C$

Programmable Logic Array

- The relationship between a truth table and a two-level representation allows us to generate a gate-level implementation of any set of logic functions.
- The sum-of-products corresponds to a programmable logic array.

Programmable Logic Array

The Design Warrior's Guide to FPGAs

Programmable Logic Array

- Efficient Characteristics
- only the truth table entries that produce a true value for at least one output have any logic gates associated with them.
- each different product term will have only one entry in the PLA, even if the product term is used in multiple outputs.

Programmable Logic Array

	Inputs	Outputs			
A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	1	1	0	0
1	0	0	1	1	0
1	1	1	1	0	
1	1			0	1

Programmable Logic Array

Incompleteley specified functions

- Example: binary coded decimal increment by 1
- BCD digits encode decimal digits $0-9$ in bit patterns 0000-1001

Notation for incompletely specified functions

- Don't cares and canonical forms
- So far, only represented on-set
- Also represent don't-care-set
- Need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:
- $\mathrm{Z}=\mathrm{m} 0+\mathrm{m} 2+\mathrm{m} 4+\mathrm{m} 6+\mathrm{m} 8+\mathrm{d} 10+\mathrm{d} 11+\mathrm{d} 12+\mathrm{d} 13+\mathrm{d} 14+\mathrm{d} 15$
- $Z=\Sigma[m(0,2,4,6,8)+d(10,11,12,13,14,15)]$
- Z = M1 •M3 •M5 •M7•M9 •D10•D11•D12•D13•D14•D15
- $Z=\Pi[M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

Simplification of two-level combinational logic

- Recall that canonical forms guarantee us 2 levels of logic. However, canonical forms do not guarantee us the most minimal version of the function.
- canonical form \neq minimal form

$$
\begin{aligned}
F(A, B, C) \quad & =(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\
& =(A+B+C)\left(A+B^{\prime}+C\right)(A+B+C)\left(A^{\prime}+B+C\right) \\
& =(A+C)(B+C)
\end{aligned}
$$

Simplification of two-level combinational logic

- The goal is to find a minimal sum of products or product of sums realization
- Exploit don't care information in the process
- Algebraic simplification
- Not an algorithmic/systematic procedure
- How do you know when the minimum realization has been found?
- Computer-aided design tools
- Precise solutions require very long computation times, especially for functions with many inputs (> 10)
- Heuristic methods employ "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
- To understand automatic tools and their strengths and weaknesses
- Ability to check results (on small examples)

The uniting theorem

- Key tool to simplification: $\mathrm{A}\left(\mathrm{B}^{\prime}+\mathrm{B}\right)=\mathrm{A}$
- Essence of simplification of two-level logic
- Find two element subsets of the ON-set where only one variable changes its value - this single varying variable can be eliminated and a single product term used to represent both elements

$$
F=A^{\prime} B^{\prime}+A B^{\prime}=\left(A^{\prime}+A\right) B^{\prime}=B^{\prime}
$$

Boolean cubes

- Visual technique for identifying when the uniting theorem can be applied
- n input variables $=\mathrm{n}$-dimensional "cube"

Mapping truth tables onto Boolean cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

ON-set = solid nodes
OFF-set = empty nodes
DC-set $=\times$ 'd nodes

Three variable example

- Binary full-adder carry-out logic

A	B	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Cout $=B C i n+A B+A C i n$

Higher dimensional cubes

- Sub-cubes of higher dimension than 2
$F(A, B, C)=\Sigma m(4,5,6,7)$
on-set forms a square

i.e., a cube of dimension 2
represents an expression in one variable
i.e., 3 dimensions - 2 dimensions

A is asserted (true) and unchanged
B and C vary
This subcube represents the

m-dimensional cubes in a n-dimensional Boolean

space

- In a 3-cube (three variables):
- 0-cube, i.e., a single node, yields a term in 3 literals
- 1-cube, i.e., a line of two nodes, yields a term in 2 literals
- 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
- 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
- m-subcube within an n-cube ($\mathrm{m}<\mathrm{n}$) yields a term with $\mathrm{n}-\mathrm{m}$ literals

Karnaugh maps

- Flat map of Boolean cube
- Wrap-around at edges
- Hard to draw and visualize for more than 4 dimensions
- Virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
- Guide to applying the uniting theorem
- On-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

Karnaugh maps (cont’d)

- Numbering scheme based on Gray-code
- e.g., 00, 01, 11, 10
- Only a single bit changes in code for adjacent map cells

$$
13=1101=A B C^{\prime} D
$$

Adjacencies in Karnaugh maps

- Wrap from first to last column
- Wrap top row to bottom row

Karnaugh map examples

- $\mathrm{F}=$

B^{\prime}
- Cout $=\longrightarrow \operatorname{Cinn}$| 0 | 0 | 1 | 0 | |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 1 |
| | | B | | |$\quad A B+A C$ in $+B C$ in
- $G(A, B, C)=$

Definition of terms for two-level simplification

- Implicant
- Single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
- Prime implicant
- Implicant that can't be combined with another to form a larger subcube
- Essential prime implicant
- Prime implicant is essential if it alone covers an element of ON-set
- Will participate in ALL possible covers of the ON-set
- DC-set used to form prime implicants but not to make implicant essential
- Objective:
- Grow implicant into prime implicants (minimize literals per term)
- Cover the ON-set with as few prime implicants as possible (minimize number of product terms)

Examples to illustrate terms

6 prime implicants:

minimum cover: $A C+B C^{\prime}+A^{\prime} B^{\prime} D$

5 prime implicants:
$B D, A B C^{\prime}, A C D, A^{\prime} B C, A^{\prime} C^{\prime} D$
essential

Karnaugh map examples

- $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(0,4,5,7)$

- Can we also determine f'?
- Option 1:

We can obtain the complement of the function by covering the Os instead of 1 s

We can obtain the complement by replacing 1's with 0 's and vice versa

Karnaugh map: 4-variable example

- $F(A, B, C, D)=\Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$
F=
$$

$$
C+A^{\prime} B D+B^{\prime} D^{\prime}
$$

find the smallest number of the largest possible subcubes to cover the ON-set
(fewer terms with fewer inputs per term)

Karnaugh maps: don't cares

- $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$
- without don't cares
- $f=A^{\prime} D+B^{\prime} C^{\prime} D$

0	0	x	0
1	1	x	1
1	1	0	0
	D		
0	X	0	0

Karnaugh maps: don't cares

- $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$
- $f=A^{\prime} D+B^{\prime} C^{\prime} D \quad$ without don't cares
- $f=A^{\prime} D+C^{\prime} D$ with don't cares

by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node
don't cares can be treated as 1s or 0s
depending on which is more advantageous

Algorithm for two-level simplification

- To get the minimum sum-of-products expression from a Karnaugh map:
- Step 1: choose an element of the ON-set
- Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
- consider top/bottom row, left/right column, and corner adjacencies
- this forms prime implicants (number of elements always a power of 2)
- Repeat Steps 1 and 2 to find all prime implicants
- Step 3: revisit the 1s in the K-map
- if covered by single prime implicant, it is essential, and participates in final cover
- 1s covered by essential prime implicant do not need to be revisited
- Step 4: if there remain 1s not covered by essential prime implicants
- select the smallest number of prime implicants that cover the remaining 1s

Algorithm for two-level simplification (example)

Design example: two-bit comparator

we'll need a 4-variable Karnaugh map for each of the 3 output functions

Design example: two-bit comparator

K-map for LT

K-map for EQ

K-map for GT
$L T=A^{\prime} B^{\prime} D+A^{\prime} C+B^{\prime} C D$
$E Q=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A B C D+A B^{\prime} C D^{\prime}$
$=(A \times n o r C) \cdot(B \times n o r D)$
$G T=B C^{\prime} D^{\prime}+A C^{\prime}+A B D^{\prime}$
$L T$ and $G T$ are similar (flip A / C and B / D)

Design example: two-bit comparator

two alternative implementations of EQ with and without XNOR

XNOR is implemented with at least 3 simple gates

Design example: 2x2-bit multiplier

block diagram and truth table

4-variable K-map for each of the 4 output functions

Design example: 2x2-bit multiplier (cont'd)

K-map for P4			A2	
	0	0	0	0
$\begin{aligned} P 4 & =A 2 B 2 B 1 \\ & +A 2 A 1^{\prime} B 2 . \end{aligned}$	0	0	0	0
	0	0	Q	1
	0	0	1	1

Design example: BCD increment by 1

block diagram
and
truth table

I8	I4	I2	I1	08	04	02	01
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	\times	X	X	\times
1	0	1	1	X	-	-	\times
1	1	0	0	X	X	X	\times
1	1	0	1	\times	X	X	\times
1	1	1	0	\times	\times	\times	\times
1	1	1	1	X	X	X	X

4-variable K-map for each of the 4 output functions

Design example: BCD increment by 1 (cont’d)

$$
\begin{aligned}
& O 8=I 4 I 2 I 1+I 8 I 1^{\prime} \\
& O 4=I 4 I 2^{\prime}+I 4 I 1^{\prime}+I 4^{\prime} I 2 I I^{2} \\
& O 2=I 8^{\prime} I 2^{\prime} I 1+I 2 I 1^{\prime}
\end{aligned}
$$

$$
O 1=I 1^{\prime}
$$

Combinational Hardware: Decoders

- A decoder is a logic block that takes in an n-bit input and selects from $2^{\text {n }}$ outputs.
- One output is asserted for each possible input combination.
- Outputs are labeled Out0, Out1, ..., Out2 ${ }^{\text {n }}-1$
- If the input is k, then Outk will be true

Combinational Hardware: Decoders

3	3-bit Decoder		i2	i1	i0	07	06	05	04	03	02	01	o0
			0	0	0	0	0	0	0	0	0	0	1
			0	0	1	0	0	0	0	0	0	1	0
			0	1	0	0	0	0	0	0	1	0	0
+			0	1	1	0	0	0	0	1	0	0	0
			1	0	0	0	0	0	1	0	0	0	0
			1	0	1	0	0	1	0	0	0	0	0
			1	1	0	0	1	0	0	0	0	0	0
			1	1	1	1	0	0	0	0	0	0	0

Combinational Hardware: Multiplexors

- A multiplexor is a logic block that takes in n inputs and selects one to be the output.
- Could also be called a selector
- The output is one of the inputs, selected by a control value.

Combinational Hardware: Multiplexors

- A multiplexor is a logic block that takes in n inputs and selects one to be the output.
- Could also be called a selector
- The output is one of the inputs, selected by a control value.

Combinational Hardware: Multiplexors

- Multiplexors can be created with an arbitrary number of data inputs.

Combinational Hardware: Multiplexors

Combinational Hardware: Multiplexors

- Logic Gates

