
COMBINATIONAL
LOGIC DESIGN

Digital Systems
• Digital electronics operate with only two voltage levels of

interest: a high voltage and a low voltage. All other
voltage values are temporary and occur while
transitioning between the values.

Digital Systems
• Low voltage is associated with 0s
• High voltage is associated with 1s
• The actual voltage values may differ from

system to system

• Computational “blocks” perform a set of logical functions
in either a combinational or sequential fashion.

• A block diagram is a simple model of these systems that
shows only the inputs and outputs.

inputs outputssystem

Logic Blocks and Block Diagrams

Combinational vs. Sequential
• Combinational:

• No Feedback
• Output defined completely in

terms of the Inputs.

• Sequential:
• With feedback
• System goes through different

states
• New state depends on Inputs

and current state.

T
n

1

X

X


n

1

Z

Z
 T

n

1

X

X


n

1

Z

Z




Combinational logic
• Truth Tables, Logic Equations, and Gates

• NOT, AND, OR, NAND, NOR, XOR, . . .
• Minimal set

• Axioms and theorems of Boolean algebra
• Proofs by re-writing
• Proofs by perfect induction

• Gate logic
• Networks of Boolean functions
• Time behavior

• Canonical forms
• Two-level
• Incompletely specified functions

• Simplification
• Boolean cubes and Karnaugh maps
• Two-level simplification

Truth Tables
• Combinational logic blocks can be completely specified by

defining the output values for each possible set of input
values.

• This is done using a truth table.

• For a logic block with n inputs, there are 2n entries in the
truth table. Each entry specifies the value of all the
outputs for that particular input combination.

• If there are 2 input variables, there should be 22 = 4
entries in the truth table.

• How many different functions of 2 input variables can we
make?

X
Y F

Possible Logic Functions

• There are 16 possible functions of 2 input variables

• In general, there are functions of n inputs

Possible Logic Functions

n22

X nand Y
not (X and Y)

X Y 16 possible functions (F0–F15)

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
X and Y

X Y

X or Y

not Y not X
1

X xor Y
X nor Y

not (X or Y)

X xnor Y

Truth Tables
• Consider a logic function with three inputs, A, B, and C,

and three outputs, D, E, and F. The function is defined as
follows:
• D is true if at least one input is true
• E is true if exactly two inputs are true
• F is true only if all three inputs are true.

Truth Tables
• Consider a logic function with three inputs, A, B, and C,

and three outputs, D, E, and F. The function is defined as
follows:
• D is true if at least one input is true
• E is true if exactly two inputs are true
• F is true only if all three inputs are true.

Inputs Outputs
A B C D E F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Truth Tables
• Consider a logic function with three inputs, A, B, and C,

and three outputs, D, E, and F. The function is defined as
follows:
• D is true if at least one input is true
• E is true if exactly two inputs are true
• F is true only if all three inputs are true.

Inputs Outputs
A B C D E F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Truth Tables
• Consider a logic function with three inputs, A, B, and C,

and three outputs, D, E, and F. The function is defined as
follows:
• D is true if at least one input is true
• E is true if exactly two inputs are true
• F is true only if all three inputs are true.

Inputs Outputs
A B C D E F
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 0

Truth Tables
• Consider a logic function with three inputs, A, B, and C,

and three outputs, D, E, and F. The function is defined as
follows:
• D is true if at least one input is true
• E is true if exactly two inputs are true
• F is true only if all three inputs are true.

Inputs Outputs
A B C D E F
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 1

Boolean Algebra
• Deals with a set of variables (operands) combined with a

set of operators.
• Variables denoted by X,Y,Z, etc.
• Variables take binary values:

Either “0” or “1” (“false” or “true”)

• Operators: NOT, AND, OR

• All logical operations can be described using these three
operators.

OR
• The OR operator is written as +, as in A + B.

• The OR operation is also called a logical sum.

A B A + B (OR)
0 0 0
0 1 1
1 0 1
1 1 1

AND
• The AND operator is written as *, as in A * B.

• The AND operation is also called a logical product.

A B A * B (AND)
0 0 0
0 1 0
1 0 0
1 1 1

NOT
• The unary operator NOT is written as A’.

A A’
0 1
1 0

Axioms and theorems of Boolean algebra

• Identity
• X + 0 = X
• X • 1 = X

• Null
• X + 1 = 1
• X • 0 = 0

• Idempotency:
• X + X = X
• X • X = X

• Involution:
• (X')' = X

• Inverse:
• X + X' = 1
• X • X' = 0

• Commutative:
• X + Y = Y + X
• X • Y = Y • X

• Associativity:
• (X + Y) + Z = X + (Y + Z)
• (X • Y) • Z = X • (Y • Z)

Axioms and theorems of Boolean algebra

• Distributivite:
• X • (Y + Z) = (X • Y) + (X • Z)
• X + (Y • Z) = (X + Y) • (X + Z)

• Uniting:
• X • Y + X • Y' = X
• (X + Y) • (X + Y') = X

• Absorption:
• X + X • Y = X
• X • (X + Y) = X

• (X + Y') • Y = X • Y
• (X • Y') + Y = X + Y

Axioms and theorems of Boolean algebra

• Factoring:
• (X + Y) • (X' + Z) =X • Z + X' • Y
• X • Y + X' • Z = (X + Z) • (X' + Y)

• Consensus:
• (X • Y) + (Y • Z) + (X' • Z) = X • Y + X' • Z
• (X + Y) • (Y + Z) • (X' + Z) = (X + Y) • (X' + Z)

• de Morgan's:
• (X + Y + ...)' = X' • Y' • ...
• (X • Y • ...)' = X' + Y' + ...

X, Y are Boolean algebra variables

X Y X' Y' X • Y X' • Y' (X • Y) + (X' • Y')
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

(X • Y) + (X' • Y') = X ⊕ Y

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is
true when the variables X
and Y have the same value
and false, otherwise

Logic functions and Boolean algebra

• Any logic function that can be expressed as a truth table can be
written as an expression in Boolean algebra using the operators: ', +,
and •

Logic functions and Boolean algebra
• D is true if at least one input is true
• E is true if exactly two inputs are true
• F is true only if all three inputs are true.

• D = A+B+C
• F = A*B*C
• E = ((A * B) + (A * C) + (B * C)) * (A * B * C)’
• E = (A * B * C’) + (A * C * B’) + (B * C * A’)

Inputs Outputs
A B C D E F
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 1

(X + Y)' = X' • Y'
NOR is equivalent to AND
with inputs complemented

(X • Y)' = X' + Y'
NAND is equivalent to OR
with inputs complemented

X Y X' Y' (X + Y)' X' • Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X' Y' (X • Y)' X' + Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems with Perfect Induction

• Using perfect induction (complete truth table):
• e.g., de Morgan's:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0

Proving theorems with Perfect Induction
• E = ((A * B) + (A * C) + (B * C)) * (A * B * C)’
• E = (A * B * C’) + (A * C * B’) + (B * C * A’)

Inputs E
A B C E ((A * B) + (A * C) +

(B * C)) * (A * B * C)’
(A * B * C’) + (A * C * B’) +

(B * C * A’)

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 0 0

Proving theorems with Rewriting
• Using the axioms of Boolean algebra:

• e.g., prove the theorem: X • Y + X • Y' = X

• e.g., prove the theorem: X + X • Y = X

Distributive law X • Y + X • Y' = X • (Y + Y')
Inverse law X • (Y + Y') = X • (1)
Identity law X • (1) = X 

Identity law X + X • Y = X • 1 + X • Y
Distributive law X • 1 + X • Y = X • (1 + Y)
Null law X • (1 + Y) = X • (1)
Identity law X • (1) = X 

Proving theorems with Rewriting
• E = ((A * B) + (A * C) + (B * C)) * (A * B * C)’
• E = (A * B * C’) + (A * C * B’) + (B * C * A’)

((A * B) + (A * C) + (B * C)) * (A * B * C)’
= ((A * B) + (A * C) + (B * C)) * (A’ + B’ + C’)

DeMorgan’s law

= (A’ + B’ + C’)(A*B) + (A’ + B’ + C’)(A*C) + (A’ + B’ + C’)(B*C)
Distributive law

= (A*B*A’) + (A*B*B’) + (A*B*C’) + (A*C*A’) + (A*C*B’) + (A*C*C’) +
(B*C*A’)+(B*C*B’)+(B*C*C’)

Distributive law

= (0*B)+(0*A)+(A*B*C’) + (0*C)+(A*C*B’)+(A*0) + (B*C*A’)+(C*0)+(B*0)
Inverse law

= 0 + 0 + (A*B*C’) + 0 +(A*C*B’) + 0 + (B*C*A’) + 0 +0
Null law

= (A · B ·C’) + (A · C ·B’) + (B · C ·A’)
Identity law

Adder, Part 1
• 1-bit binary adder

• inputs: A, B, Carry-in
• outputs: Sum, Carry-out

A
B

Cin
Cout

A B Cin Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
= A' B' Cin + A' B Cin' + A B' Cin' + A B CinΣ

Σ

Σ

Apply the theorems to simplify expressions

• The theorems of Boolean algebra can simplify Boolean
expressions
• The Cout function is used as an example here, but the same

rules apply to any function.

Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
(Idempotency) = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
(Commutative) = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
(Distributive) = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin
(Inverse) = (1) B Cin + A B' Cin + A B Cin' + A B Cin
(Idempotency) = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
(Commutative) = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
(Distributive) = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
(Inverse) = B Cin + A (1) Cin + A B Cin' + A B Cin
(Distrivutive) = B Cin + A Cin + A B (Cin' + Cin)
(Inverse) = B Cin + A Cin + A B (1)

= B Cin + A Cin + A B

• NOT X' X ~X

• AND X • Y X ∧ Y

• OR X + Y X ∨ Y

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

Logic Gates

Logic Gates and Inverters
• Rather than draw inverters explicitly, a common practice is

to add “bubbles” to the inputs or outputs of a gate to
cause the logic value on that input line or output line to be
inverted.

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

X xor Y = X Y' + X' Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X' Y'
X and Y are the same

("equality", "coincidence")

Logic Gates

• NAND

• NOR

• XOR
X ⊕ Y

• XNOR
X ⊕ Y

Adder, Part 2
• Logic gates for Sum (shown without Cin)

Sum = A' B + A B’
A B Sum
0 0
0 1
1 0
1 1

0
1
1
0

Adder, Part 2
• Logic gates for Cout (shown without Cin)

A B Cout
0 0
1 0
0 1
1 1

0
0
0
1

Cout = A B

Adder, Part 2
• Logic gates for Sum and Cout (shown without Cin)

• More than one way to map expressions to gates

• e.g., Z = A' • B' • (C + D) = (A' • (B' • (C + D)))
T1

T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

Logic Gates

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Different realizations of a function

two-level realization
(we don't count NOT gates)

XOR gate (easier to draw
but costlier to build)

multi-level realization
(gates with fewer inputs)

Which realization is best?

• Reduce number of inputs
• literal: input variable (complemented or not)

• can approximate cost of logic gate as 2 transistors per literal
• why not count inverters?

• Fewer literals means less transistors
• smaller circuits and reduced electric connections

• Fewer inputs implies faster gates
• gates are smaller and thus also faster

• Fan-ins (# of gate inputs) are limited in some technologies
• Reduce number of gates

• Fewer gates (and the packages they come in) means smaller
circuits

Which realization is best?

• Reduce number of levels of gates
• Fewer level of gates implies reduced signal propagation delays
• Minimum delay configuration typically requires more gates

• wider, less deep circuits

• How do we explore tradeoffs between increased circuit
delay and size?
• Automated tools to generate different solutions
• Logic minimization: reduce number of gates and complexity
• Logic optimization: reduction while trading off against delay

Canonical forms
• Any logic function can be implemented with only AND,

OR, and NOT functions.

• Any logic function can be written in canonical form, where
every input is either a true or complemented variable and
there are only two levels of gates
• AND and OR

Canonical forms
• Truth table is the unique signature of a Boolean function
• Many alternative gate realizations may have the same

truth table
• Canonical forms

• Standard forms for a Boolean expression
• Provides a unique algebraic signature

Canonical forms
• These are called two-level representations

• sum of products
• A logical sum (OR) of products (terms using the AND operator)

• product of sums
• A logical product (AND) of sums (terms using the OR operator)

Logic functions in Canonical Form
• D is true if at least one input is true
• E is true if exactly two inputs are true
• F is true only if all three inputs are true.

• D = A+B+C Product of Sums
• F = A*B*C Sum of Products
• E = ((A * B) + (A * C) + (B * C)) * (A * B * C)’ Non-canonical
• E = (A * B * C’) + (A * C * B’) + (B * C * A’) Sum of Products

Inputs Outputs
A B C D E F
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 1

Sum-of-products canonical form

• Also known as disjunctive normal form
• Also known as minterm expansion

F =

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0 F' = A'B'C' + A'BC' + AB'C'

F = 001 011 101 110 111

+ A'BC+ AB'C + ABC' + ABCA'B'C

short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A'B'C' m0
0 0 1 A'B'C m1
0 1 0 A'BC' m2
0 1 1 A'BC m3
1 0 0 AB'C' m4
1 0 1 AB'C m5
1 1 0 ABC' m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + AB'C + ABC' + ABC

canonical form ≠ minimal form
F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'

= (A'B' + A'B + AB' + AB)C + ABC'
= ((A' + A)(B' + B))C + ABC'
= C + ABC'
= ABC' + C
= AB + C

Sum-of-products canonical form

• Product term (or minterm)
• ANDed product of literals – input combination for which output is true
• Each variable appears exactly once, in true or inverted form (but not both)

Sum-of-products canonical form
Inputs Output

A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Sum-of-products canonical form

• A’ * B’ * C

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Sum-of-products canonical form

• A’ * B’ * C
• A’ * B * C’

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Sum-of-products canonical form

• A’ * B’ * C
• A’ * B * C’
• A * B’ * C’

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Sum-of-products canonical form

• A’ * B’ * C
• A’ * B * C’
• A * B’ * C’
• A * B * C

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Sum-of-products canonical form

• D = (A’ * B’ * C) + (A’ * B * C’) + (A * B’ * C’) + (A * B * C)

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

F = 000 010 100
F =

F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

Product-of-sums canonical form
• Also known as conjunctive normal form
• Also known as maxterm expansion

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

(A + B + C) (A + B' + C) (A' + B + C)

A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C' M1
0 1 0 A+B'+C M2
0 1 1 A+B'+C' M3
1 0 0 A'+B+C M4
1 0 1 A'+B+C' M5
1 1 0 A'+B'+C M6
1 1 1 A'+B'+C' M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

= M0 • M2 • M4
= (A + B + C) (A + B' + C) (A' + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)

= (A + B + C) (A + B' + C)
(A + B + C) (A' + B + C)

= (A + C) (B + C)

Product-of-sums canonical form

• Sum term (or maxterm)
• ORed sum of literals – input combination for which output is false
• each variable appears exactly once, in true or inverted form (but not both)

Product-of-sums canonical form
Inputs Output

A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Product-of-sums canonical form

• A + B + C

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Product-of-sums canonical form

• A + B + C
• A + B’ + C’

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Product-of-sums canonical form

• A + B + C
• A + B’ + C’
• A’ + B + C’

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Product-of-sums canonical form

• A + B + C
• A + B’ + C’
• A’ + B + C’
• A’ + B’ + C

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Product-of-sums canonical form

• D= (A + B + C)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level implementations of F = AB
+ C

Mapping between canonical forms

• Minterm to maxterm conversion
• Use maxterms whose indices do not appear in minterm expansion
• e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

• Maxterm to minterm conversion
• Use minterms whose indices do not appear in maxterm expansion
• e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7)

• Minterm expansion of F to minterm expansion of F'
• Use minterms whose indices do not appear
• e.g., F(A,B,C) = Σm(1,3,5,6,7) F'(A,B,C) = Σm(0,2,4)

• Maxterm expansion of F to maxterm expansion of F'
• Use maxterms whose indices do not appear
• e.g., F(A,B,C) = ΠM(0,2,4) F'(A,B,C) = ΠM(1,3,5,6,7)

S-o-P, P-o-S, and
de Morgan’s theorem
• Sum-of-products

• F' = A'B'C' + A'BC' + AB'C‘

• Apply de Morgan's
• (F')' = (A'B'C' + A'BC' + AB'C')'
• F = (A + B + C) (A + B' + C) (A' + B + C)

• Product-of-sums
• F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

• Apply de Morgan's
• (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
• F = A'B'C + A'BC + AB'C + ABC' + ABC

Programmable Logic Array
• The relationship between a truth table and a two-level

representation allows us to generate a gate-level
implementation of any set of logic functions.

• The sum-of-products corresponds to a programmable
logic array.

Programmable Logic Array

The Design Warrior’s Guide to FPGAs
Devices, Tools, and Flows. ISBN 0750676043

Copyright © 2004 Mentor Graphics Corp.
(www.mentor.com)

a b c

&

&

&

a !a b !b c !c

N/A

Predefined AND array

Pr
og

ra
m

m
ab

le
O

R
 a

rra
y

Predefined link
Programmable link

l l l

w x y

N/A

N/A

Programmable Logic Array
• Efficient Characteristics

• only the truth table entries that produce a true value for at least one
output have any logic gates associated with them.

• each different product term will have only one entry in the PLA,
even if the product term is used in multiple outputs.

Programmable Logic Array
Inputs Outputs

A B C D E F
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 1

Programmable Logic Array

Incompleteley specified functions

• Example: binary coded decimal increment by 1
• BCD digits encode decimal digits 0 – 9 in bit patterns 0000 – 1001
A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these input patterns should
never be encountered in practice
– "don't care" about associated
output values, can be exploited
in minimization

don't care (DC) set of W

on-set of W

Notation for incompletely specified functions

• Don't cares and canonical forms
• So far, only represented on-set
• Also represent don't-care-set
• Need two of the three sets (on-set, off-set, dc-set)

• Canonical representations of the BCD increment by 1 function:

• Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
• Z = Σ [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

• Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
• Z = Π [M(1,3,5,7,9) • D(10,11,12,13,14,15)]

Simplification of two-level combinational logic
• Recall that canonical forms guarantee us 2 levels of logic. However,

canonical forms do not guarantee us the most minimal version of the function.

• canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)

= (A + B + C) (A + B' + C) (A + B + C) (A' + B + C)
= (A + C) (B + C)

Simplification of two-level combinational logic

• The goal is to find a minimal sum of products or product of sums
realization
• Exploit don't care information in the process

• Algebraic simplification
• Not an algorithmic/systematic procedure
• How do you know when the minimum realization has been found?

• Computer-aided design tools
• Precise solutions require very long computation times, especially for

functions with many inputs (> 10)
• Heuristic methods employ "educated guesses" to reduce amount of

computation and yield good if not best solutions
• Hand methods still relevant

• To understand automatic tools and their strengths and weaknesses
• Ability to check results (on small examples)

A B F
0 0 1
0 1 0
1 0 1
1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A'B'+AB' = (A'+A)B' = B'

The uniting theorem
• Key tool to simplification: A (B' + B) = A
• Essence of simplification of two-level logic

• Find two element subsets of the ON-set where only one variable
changes its value – this single varying variable can be eliminated
and a single product term used to represent both elements

1-cube
X

0 1

Boolean cubes
• Visual technique for identifying when the uniting theorem

can be applied
• n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111

A B F
0 0 1
0 1 0
1 0 1
1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes)
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables
onto Boolean cubes
• Uniting theorem combines two "faces" of a cube into a

larger "face"
• Example:

A

B

11

00

01

10

F

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Three variable example
• Binary full-adder carry-out logic

A

B C

000

111

101

F(A,B,C) = Σm(4,5,6,7)
on-set forms a square
i.e., a cube of dimension 2
represents an expression in one variable
i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes
• Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001
010

011
110

m-dimensional cubes in a n-dimensional Boolean
space
• In a 3-cube (three variables):

• 0-cube, i.e., a single node, yields a term in 3 literals
• 1-cube, i.e., a line of two nodes, yields a term in 2 literals
• 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
• 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

• In general,
• m-subcube within an n-cube (m < n) yields a term with n – m

literals

A B F
0 0 1
0 1 0
1 0 1
1 1 0

Karnaugh maps
• Flat map of Boolean cube

• Wrap–around at edges
• Hard to draw and visualize for more than 4 dimensions
• Virtually impossible for more than 6 dimensions

• Alternative to truth-tables to help visualize adjacencies
• Guide to applying the uniting theorem
• On-set elements with only one variable changing value are

adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Karnaugh maps (cont’d)
• Numbering scheme based on Gray–code

• e.g., 00, 01, 11, 10
• Only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D

Adjacencies in Karnaugh maps

• Wrap from first to last column
• Wrap top row to bottom row

000 010

001 011

110 100

111 101C
B

A

A

B C

000

111

101

100

001
010

011
110

Karnaugh map examples
• F =

• Cout =

• G(A,B,C) =

0 0

0 1

1 0

1 1Cin
B

A

1 1

0 0B

A

B’

AB + ACin + BCin

0 0

0 0

1 1

1 1C
B

A

A

Definition of terms for two-level simplification
• Implicant

• Single element of ON-set or DC-set or any group of these elements
that can be combined to form a subcube

• Prime implicant
• Implicant that can't be combined with another to form a larger

subcube
• Essential prime implicant

• Prime implicant is essential if it alone covers an element of ON-set
• Will participate in ALL possible covers of the ON-set
• DC-set used to form prime implicants but not to make implicant

essential
• Objective:

• Grow implicant into prime implicants (minimize literals per term)
• Cover the ON-set with as few prime implicants as possible

(minimize number of product terms)

0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1
B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to illustrate terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0
B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' + A'B'D

essential

minimum cover: 4 essential implicants

essential

We can obtain the
complement of the
function by covering
the 0s instead of 1s

Karnaugh map examples
• f(A,B,C) = Σm(0,4,5,7)

• Can we also determine f’?
• Option 1:

• Option 2:

1 0

0 0

0 1

1 1C
B

A

AC + B’C’
+ AB’

1 0

0 0

0 1

1 1C
B

A

BC’ + A’C

We can obtain the
complement by
replacing 1's with
0's and vice versa

0 1

1 1

1 0

0 0C
B

A

BC’ + A’C

C + B’D’

find the smallest number of the largest possible
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example

• F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

D

A

B

D
A

B
C

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD

• f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
• without don't cares

• f = + B’C’D

Karnaugh maps: don’t cares

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A’D

Karnaugh maps: don’t cares

• f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
• f = A'D + B'C'D without don't cares
• f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A'D

by using don't care as a "1"
a 2-cube can be formed
rather than a 1-cube to cover
this node

+ C'D

Algorithm for two-level simplification

• To get the minimum sum-of-products expression from a Karnaugh
map:
• Step 1: choose an element of the ON-set
• Step 2: find "maximal" groupings of 1s and Xs adjacent to that

element
• consider top/bottom row, left/right column, and corner adjacencies
• this forms prime implicants (number of elements always a power of 2)

• Repeat Steps 1 and 2 to find all prime implicants
• Step 3: revisit the 1s in the K-map

• if covered by single prime implicant, it is essential, and participates in
final cover

• 1s covered by essential prime implicant do not need to be revisited
• Step 4: if there remain 1s not covered by essential prime implicants

• select the smallest number of prime implicants that cover the remaining
1s

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

3 primes around AB'C'D'

Algorithm for two-level simplification (example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

Design example: two-bit comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B
C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table

A' B' D + A' C + B' C D

B C' D' + A C' + A B D'

LT =
EQ =

GT =

K-map for EQK-map for LT K-map for GT

Design example: two-bit comparator

0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0
B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1
B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0
B

C

= (A xnor C) • (B xnor D)

LT and GT are similar (flip A/C and B/D)

A' B' C' D' + A' B C' D + A B C D + A B' C D’

two alternative
implementations of EQ
with and without XNOR

XNOR is implemented with
at least 3 simple gates

A B C D

EQ

EQ

Design example: two-bit comparator

block diagram
and

truth table

4-variable K-map
for each of the 4
output functions

A2 A1 B2 B1 P8 P4 P2 P1
0 0 0 0 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

1 1 0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1

Design example: 2x2-bit multiplier

P1
P2
P4
P8

A1
A2
B1
B2

K-map for P8 K-map for P4

K-map for P2 K-map for P1

Design example: 2x2-bit multiplier (cont’d)

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

0 1

1 1
A1

B2

0 0

0 1

0 0

1 0
B1

A2

0 1

0 0

1 0

0 0
A1

B2

0 0

0 0

0 0

1 1
B1

A2

0 1

0 1

0 1

1 0
A1

B2

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

1 0

0 0
A1

B2 P8 = A2A1B2B1

P4 = A2B2B1'
+ A2A1'B2

P2 = A2'A1B2
+ A1B2B1'
+ A2B2'B1
+ A2A1'B1

P1 = A1B1

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X Xblock diagram

and
truth table

4-variable K-map for each of
the 4 output functions

O1
O2
O4
O8

I1
I2
I4
I8

Design example: BCD increment by 1

O8 = I4 I2 I1 + I8 I1'
O4 = I4 I2' + I4 I1' + I4’ I2 I1
O2 = I8’ I2’ I1 + I2 I1'
O1 = I1'

O8 O4

O2 O1

Design example: BCD increment by 1 (cont’d)

0 0

0 0

X 1

X 0
I1

I8

0 1

0 0

X X

X X
I4

I2

0 0

1 1

X 0

X 0
I1

I8

0 0

1 1

X X

X X
I4

I2

0 1

0 1

X 0

X 0
I1

I8

1 0

0 1

X X

X X
I4

I2

1 1

0 0

X 1

X 0
I1

I8

0 0

1 1

X X

X X
I4

I2

Combinational Hardware: Decoders
• A decoder is a logic block that takes in an n-bit input and

selects from 2n outputs.
• One output is asserted for each possible input combination.
• Outputs are labeled Out0, Out1, …, Out2n – 1
• If the input is k, then Outk will be true

Combinational Hardware: Decoders

i2 i1 i0 o7 o6 o5 o4 o3 o2 o1 o0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

3-bit Decoder
3

Combinational Hardware: Multiplexors
• A multiplexor is a logic block that takes in n inputs and

selects one to be the output.
• Could also be called a selector
• The output is one of the inputs, selected by a control value.

Combinational Hardware: Multiplexors
• A multiplexor is a logic block that takes in n inputs and

selects one to be the output.
• Could also be called a selector
• The output is one of the inputs, selected by a control value.

Combinational Hardware: Multiplexors
• Multiplexors can be created with an arbitrary number of

data inputs.

MULTIPLEXOR 1 output2n inputs

n selection lines

Combinational Hardware: Multiplexors

MULTIPLEXOR Output4 Inputs

S0 S1

I0

I1

I2

I3

S1 S0 Output
0 0
0 1
1 0
1 1

I0
I1
I2
I3

Combinational Hardware: Multiplexors
• Logic Gates

	Combinational Logic Design
	Digital Systems
	Digital Systems
	Logic Blocks and Block Diagrams
	Combinational vs. Sequential
	Combinational logic
	Truth Tables
	Possible Logic Functions
	Possible Logic Functions
	Truth Tables
	Truth Tables
	Truth Tables
	Truth Tables
	Truth Tables
	Boolean Algebra
	OR
	AND
	NOT
	Axioms and theorems of Boolean algebra
	Axioms and theorems of Boolean algebra
	Axioms and theorems of Boolean algebra
	Logic functions and Boolean algebra
	Logic functions and Boolean algebra
	Proving theorems with Perfect Induction
	Proving theorems with Perfect Induction
	Proving theorems with Rewriting
	Proving theorems with Rewriting
	Adder, Part 1
	Apply the theorems to simplify expressions
	Logic Gates
	Logic Gates and Inverters
	Logic Gates
	Adder, Part 2
	Adder, Part 2
	Adder, Part 2
	Logic Gates
	Different realizations of a function
	Which realization is best?
	Which realization is best?
	Canonical forms
	Canonical forms
	Canonical forms
	Logic functions in Canonical Form
	Sum-of-products canonical form
	Sum-of-products canonical form
	Sum-of-products canonical form
	Sum-of-products canonical form
	Sum-of-products canonical form
	Sum-of-products canonical form
	Sum-of-products canonical form
	Sum-of-products canonical form
	Product-of-sums canonical form
	Product-of-sums canonical form
	Product-of-sums canonical form
	Product-of-sums canonical form
	Product-of-sums canonical form
	Product-of-sums canonical form
	Product-of-sums canonical form
	Product-of-sums canonical form
	Four alternative two-level implementations of F = AB + C
	Mapping between canonical forms
	S-o-P, P-o-S, and �de Morgan’s theorem
	Programmable Logic Array
	Programmable Logic Array
	Programmable Logic Array
	Programmable Logic Array
	Programmable Logic Array
	Incompleteley specified functions
	Notation for incompletely specified functions
	Simplification of two-level combinational logic
	Simplification of two-level combinational logic
	The uniting theorem
	Boolean cubes
	Mapping truth tables �onto Boolean cubes
	Three variable example
	Higher dimensional cubes
	m-dimensional cubes in a n-dimensional Boolean space
	Karnaugh maps
	Karnaugh maps (cont’d)
	Adjacencies in Karnaugh maps
	Karnaugh map examples
	Definition of terms for two-level simplification
	Examples to illustrate terms
	Karnaugh map examples
	Karnaugh map: 4-variable example
	Karnaugh maps: don’t cares
	Karnaugh maps: don’t cares
	Algorithm for two-level simplification
	Algorithm for two-level simplification (example)
	Design example: two-bit comparator
	Design example: two-bit comparator
	Design example: two-bit comparator
	Design example: 2x2-bit multiplier
	Design example: 2x2-bit multiplier (cont’d)
	Design example: BCD increment by 1
	Design example: BCD increment by 1 (cont’d)
	Combinational Hardware: Decoders
	Combinational Hardware: Decoders
	Combinational Hardware: Multiplexors
	Combinational Hardware: Multiplexors
	Combinational Hardware: Multiplexors
	Combinational Hardware: Multiplexors
	Combinational Hardware: Multiplexors

