
COMBINATIONAL 
LOGIC DESIGN



Digital Systems
• Digital electronics operate with only two voltage levels of 

interest: a high voltage and a low voltage. All other 
voltage values are temporary and occur while 
transitioning between the values.  



Digital Systems
• Low voltage is associated with 0s 
• High voltage is associated with 1s
• The actual voltage values may differ from 

system to system



• Computational “blocks” perform a set of logical functions 
in either a combinational or sequential fashion.

• A block diagram is a simple model of these systems that 
shows only the inputs and outputs.

inputs outputssystem

Logic Blocks and Block Diagrams



Combinational vs. Sequential
• Combinational:

• No Feedback
• Output defined completely in 

terms of the Inputs. 

• Sequential:
• With feedback
• System goes through different 

states
• New state depends on Inputs 

and current state. 
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Combinational logic
• Truth Tables, Logic Equations, and Gates

• NOT, AND, OR, NAND, NOR, XOR, . . .
• Minimal set

• Axioms and theorems of Boolean algebra
• Proofs by re-writing
• Proofs by perfect induction

• Gate logic
• Networks of Boolean functions
• Time behavior

• Canonical forms
• Two-level
• Incompletely specified functions

• Simplification
• Boolean cubes and Karnaugh maps
• Two-level simplification



Truth Tables
• Combinational logic blocks can be completely specified by 

defining the output values for each possible set of input 
values.

• This is done using a truth table.

• For a logic block with n inputs, there are 2n entries in the 
truth table. Each entry specifies the value of all the 
outputs for that particular input combination.



• If there are 2 input variables, there should be 22 = 4 
entries in the truth table.

• How many different functions of 2 input variables can we 
make?

X
Y F

Possible Logic Functions



• There are 16 possible functions of 2 input variables

• In general, there are            functions of n inputs

Possible Logic Functions

n22

X nand Y
not (X and Y)

X Y 16 possible functions (F0–F15)

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
X and Y

X Y

X or Y

not Y not X
1

X xor Y
X nor Y

not (X or Y)

X xnor Y



Truth Tables
• Consider a logic function with three inputs, A, B, and C, 

and three outputs, D, E, and F. The function is defined as 
follows: 
• D is true if at least one input is true
• E is true if exactly two inputs are true 
• F is true only if all three inputs are true.



Truth Tables
• Consider a logic function with three inputs, A, B, and C, 

and three outputs, D, E, and F. The function is defined as 
follows: 
• D is true if at least one input is true
• E is true if exactly two inputs are true 
• F is true only if all three inputs are true.

Inputs Outputs
A B C D E F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1



Truth Tables
• Consider a logic function with three inputs, A, B, and C, 

and three outputs, D, E, and F. The function is defined as 
follows: 
• D is true if at least one input is true
• E is true if exactly two inputs are true 
• F is true only if all three inputs are true.

Inputs Outputs
A B C D E F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1



Truth Tables
• Consider a logic function with three inputs, A, B, and C, 

and three outputs, D, E, and F. The function is defined as 
follows: 
• D is true if at least one input is true
• E is true if exactly two inputs are true 
• F is true only if all three inputs are true.

Inputs Outputs
A B C D E F
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 0



Truth Tables
• Consider a logic function with three inputs, A, B, and C, 

and three outputs, D, E, and F. The function is defined as 
follows: 
• D is true if at least one input is true
• E is true if exactly two inputs are true 
• F is true only if all three inputs are true.

Inputs Outputs
A B C D E F
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 1



Boolean Algebra
• Deals with a set of variables (operands) combined with a 

set of operators.
• Variables denoted by X,Y,Z, etc.
• Variables take binary values:

Either “0” or “1” (“false” or “true”)

• Operators: NOT, AND, OR

• All logical operations can be described using these three 
operators.



OR
• The OR operator is written as +, as in A + B. 

• The OR operation is also called a logical sum.

A B A + B (OR)
0 0 0
0 1 1
1 0 1
1 1 1



AND
• The AND operator is written as *, as in A * B. 

• The AND operation is also called a logical product.

A B A * B (AND)
0 0 0
0 1 0
1 0 0
1 1 1



NOT
• The unary operator NOT is written as A’.

A A’
0 1
1 0



Axioms and theorems of Boolean algebra

• Identity
• X + 0 = X
• X • 1 = X

• Null
• X + 1 = 1
• X • 0 = 0

• Idempotency:
• X + X = X
• X • X = X

• Involution:
• (X')' = X

• Inverse:
• X + X' = 1
• X • X' = 0

• Commutative:
• X + Y = Y + X
• X • Y = Y • X

• Associativity:
• (X + Y) + Z = X + (Y + Z)
• (X • Y) • Z = X • (Y • Z)



Axioms and theorems of Boolean algebra

• Distributivite:
• X • (Y + Z) = (X • Y) + (X • Z)
• X + (Y • Z) = (X + Y) • (X + Z)

• Uniting:
• X • Y + X • Y' = X
• (X + Y) • (X + Y') = X

• Absorption:
• X + X • Y = X
• X • (X + Y) = X

• (X + Y') • Y = X • Y
• (X • Y') + Y = X + Y



Axioms and theorems of Boolean algebra

• Factoring:
• (X + Y) • (X' + Z) =X • Z + X' • Y
• X • Y + X' • Z = (X + Z) • (X' + Y)

• Consensus:
• (X • Y) + (Y • Z) + (X' • Z) = X • Y + X' • Z
• (X + Y) • (Y + Z) • (X' + Z) = (X + Y) • (X' + Z)

• de Morgan's:
• (X + Y + ...)' = X' • Y' • ...
• (X • Y • ...)' = X' + Y' + ...



X, Y are Boolean algebra variables

X Y X' Y' X • Y X' • Y' ( X • Y ) + ( X' • Y' )
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

( X • Y ) + ( X' • Y' )     =    X ⊕ Y

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X' X' • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is 
true when the variables X 
and Y have the same value
and false, otherwise

Logic functions and Boolean algebra

• Any logic function that can be expressed as a truth table can be 
written as an expression in Boolean algebra using the operators: ', +, 
and •



Logic functions and Boolean algebra
• D is true if at least one input is true
• E is true if exactly two inputs are true 
• F is true only if all three inputs are true.

• D = A+B+C
• F = A*B*C
• E = ((A * B) + (A * C) + (B * C)) * (A * B * C )’
• E = (A * B * C’ ) + (A * C * B’ ) + (B * C * A’ )

Inputs Outputs
A B C D E F
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 1



(X + Y)' = X' • Y'
NOR is equivalent to AND 
with inputs complemented

(X • Y)' = X' + Y'
NAND is equivalent to OR 
with inputs complemented

X Y X' Y' (X + Y)' X' • Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X' Y' (X • Y)' X' + Y'
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems with Perfect Induction

• Using perfect induction (complete truth table):
• e.g., de Morgan's:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0



Proving theorems with Perfect Induction
• E = ((A * B) + (A * C) + (B * C)) * (A * B * C )’
• E = (A * B * C’ ) + (A * C * B’ ) + (B * C * A’ )

Inputs E
A B C E ((A * B) + (A * C) + 

(B * C)) * (A * B * C )’
(A * B * C’ ) + (A * C * B’ ) + 

(B * C * A’ )

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 0 0



Proving theorems with Rewriting
• Using the axioms of Boolean algebra:

• e.g., prove the theorem: X • Y + X • Y' =   X

• e.g., prove the theorem: X + X • Y =   X

Distributive law X • Y + X • Y' =   X • (Y + Y')
Inverse law X • (Y + Y') =   X • (1)
Identity law X • (1) =   X 

Identity law X  +  X • Y =   X • 1  +  X • Y
Distributive law X • 1  +  X • Y =   X • (1 + Y)
Null law X • (1 + Y) =   X • (1)
Identity law X • (1) =   X 



Proving theorems with Rewriting
• E = ((A * B) + (A * C) + (B * C)) * (A * B * C )’ 
• E = (A * B * C’ ) + (A * C * B’ ) + (B * C * A’ )

((A * B) + (A * C) + (B * C)) * (A * B * C )’
= ((A * B) + (A * C) + (B * C)) * (A’ + B’ + C’)

DeMorgan’s law

= (A’ + B’ + C’)(A*B) + (A’ + B’ + C’)(A*C) + (A’ + B’ + C’)(B*C) 
Distributive law

= (A*B*A’) + (A*B*B’) + (A*B*C’) + (A*C*A’) + (A*C*B’) + (A*C*C’) + 
(B*C*A’)+(B*C*B’)+(B*C*C’)

Distributive law

= (0*B)+(0*A)+(A*B*C’) + (0*C)+(A*C*B’)+(A*0) + (B*C*A’)+(C*0)+(B*0)
Inverse  law

= 0 + 0 + (A*B*C’)  + 0 +(A*C*B’) + 0 + (B*C*A’) + 0 +0
Null law

= (A · B ·C’ ) + (A · C ·B’ ) + (B · C ·A’ )
Identity law



Adder, Part 1
• 1-bit binary adder

• inputs: A, B, Carry-in
• outputs: Sum, Carry-out

A
B

Cin
Cout

A B Cin Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
= A' B' Cin + A' B Cin' + A B' Cin' + A B CinΣ

Σ

Σ



Apply the theorems to simplify expressions

• The theorems of Boolean algebra can simplify Boolean 
expressions
• The Cout function is used as an example here, but the same 

rules apply to any function.

Cout =  A' B Cin + A B' Cin + A B Cin' + A B Cin
(Idempotency) =  A' B Cin +  A B' Cin +  A B Cin'  +  A B Cin +  A B Cin
(Commutative) =  A' B Cin +  A B Cin +  A B' Cin +  A B Cin'  +  A B Cin
(Distributive) =  (A' + A) B Cin +  A B' Cin +  A B Cin'  +  A B Cin
(Inverse) =  (1) B Cin +  A B' Cin +  A B Cin'  +  A B Cin
(Idempotency) =  B Cin +  A B' Cin + A B Cin'  +  A B Cin +  A B Cin
(Commutative) =  B Cin +  A B' Cin +  A B Cin +  A B Cin'  +  A B Cin
(Distributive) =  B Cin +  A (B' + B) Cin +  A B Cin'  +  A B Cin
(Inverse) =  B Cin +  A (1) Cin +  A B Cin'  +  A B Cin
(Distrivutive) =  B Cin +  A Cin +  A B (Cin' +  Cin)
(Inverse) =  B Cin +  A Cin +  A B (1)

=  B Cin +  A Cin +  A B 



• NOT X' X ~X

• AND X • Y X ∧ Y

• OR X + Y X ∨ Y

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

Logic Gates



Logic Gates and Inverters
• Rather than draw inverters explicitly, a common practice is

to add “bubbles” to the inputs or outputs of a gate to
cause the logic value on that input line or output line to be
inverted.



X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

X xor Y = X Y' + X' Y
X or Y but not both 

("inequality", "difference")

X xnor Y = X Y + X' Y'
X and Y are the same 

("equality", "coincidence")

Logic Gates

• NAND

• NOR

• XOR
X ⊕ Y

• XNOR
X ⊕ Y



Adder, Part 2
• Logic gates for Sum (shown without Cin)

Sum = A' B + A B’
A B Sum
0 0
0 1
1 0
1 1

0
1
1
0



Adder, Part 2
• Logic gates for Cout (shown without Cin)

A B Cout
0 0
1 0
0 1
1 1

0
0
0
1

Cout = A B



Adder, Part 2
• Logic gates for Sum and Cout (shown without Cin)



• More than one way to map expressions to gates

• e.g.,  Z = A' • B' • (C + D) = (A' • (B' • (C + D)))
T1

T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

Logic Gates



A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Different realizations of a function

two-level realization
(we don't count NOT gates)

XOR gate (easier to draw 
but costlier to build)

multi-level realization
(gates with fewer inputs)



Which realization is best?

• Reduce number of inputs
• literal: input variable (complemented or not)

• can approximate cost of logic gate as 2 transistors per literal
• why not count inverters?

• Fewer literals means less transistors
• smaller circuits and reduced electric connections

• Fewer inputs implies faster gates
• gates are smaller and thus also faster

• Fan-ins (# of gate inputs) are limited in some technologies
• Reduce number of gates

• Fewer gates (and the packages they come in) means smaller 
circuits



Which realization is best?

• Reduce number of levels of gates
• Fewer level of gates implies reduced signal propagation delays
• Minimum delay configuration typically requires more gates

• wider, less deep circuits

• How do we explore tradeoffs between increased circuit
delay and size?
• Automated tools to generate different solutions
• Logic minimization: reduce number of gates and complexity
• Logic optimization: reduction while trading off against delay



Canonical forms
• Any logic function can be implemented with only AND, 

OR, and NOT functions. 

• Any logic function can be written in canonical form, where 
every input is either a true or complemented variable and 
there are only two levels of gates
• AND and OR



Canonical forms
• Truth table is the unique signature of a Boolean function
• Many alternative gate realizations may have the same

truth table
• Canonical forms

• Standard forms for a Boolean expression
• Provides a unique algebraic signature



Canonical forms
• These are called two-level representations

• sum of products
• A logical sum (OR) of products (terms using the AND operator)

• product of sums
• A logical product (AND) of sums (terms using the OR operator)



Logic functions in Canonical Form
• D is true if at least one input is true
• E is true if exactly two inputs are true
• F is true only if all three inputs are true.

• D = A+B+C Product of Sums
• F = A*B*C Sum of Products
• E = ((A * B) + (A * C) + (B * C)) * (A * B * C )’ Non-canonical
• E = (A * B * C’ ) + (A * C * B’ ) + (B * C * A’ ) Sum of Products

Inputs Outputs
A B C D E F
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 1



Sum-of-products canonical form

• Also known as disjunctive normal form
• Also known as minterm expansion

F =

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0 F' = A'B'C' + A'BC' + AB'C'

F =  001      011      101       110       111

+ A'BC+ AB'C + ABC' + ABCA'B'C



short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A'B'C' m0
0 0 1 A'B'C m1
0 1 0 A'BC' m2
0 1 1 A'BC m3
1 0 0 AB'C' m4
1 0 1 AB'C m5
1 1 0 ABC' m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7
=  A'B'C + A'BC + AB'C + ABC' + ABC

canonical form ≠ minimal form
F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC' 

= (A'B' + A'B + AB' + AB)C + ABC'
= ((A' + A)(B' + B))C + ABC'
= C + ABC'
= ABC' + C
= AB + C

Sum-of-products canonical form

• Product term (or minterm)
• ANDed product of literals – input combination for which output is true
• Each variable appears exactly once, in true or inverted form (but not both)



Sum-of-products canonical form
Inputs Output

A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Sum-of-products canonical form

• A’ * B’ * C

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Sum-of-products canonical form

• A’ * B’ * C
• A’ * B * C’

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Sum-of-products canonical form

• A’ * B’ * C
• A’ * B * C’
• A * B’ * C’

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Sum-of-products canonical form

• A’ * B’ * C
• A’ * B * C’
• A * B’ * C’
• A * B * C

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Sum-of-products canonical form

• D = (A’ * B’ * C) + (A’ * B * C’) + (A * B’ * C’) + (A * B * C)

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



F =       000              010              100
F =

F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

Product-of-sums canonical form
• Also known as conjunctive normal form
• Also known as maxterm expansion

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

(A + B + C) (A + B' + C) (A' + B + C)



A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C' M1
0 1 0 A+B'+C M2
0 1 1 A+B'+C' M3
1 0 0 A'+B+C M4
1 0 1 A'+B+C' M5
1 1 0 A'+B'+C M6
1 1 1 A'+B'+C' M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

=  M0 • M2 • M4
=  (A + B + C) (A + B' + C) (A' + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)

= (A + B + C) (A + B' + C)
(A + B + C) (A' + B + C)

= (A + C) (B + C)

Product-of-sums canonical form

• Sum term (or maxterm)
• ORed sum of literals – input combination for which output is false
• each variable appears exactly once, in true or inverted form (but not both)



Product-of-sums canonical form
Inputs Output

A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Product-of-sums canonical form

• A + B + C

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Product-of-sums canonical form

• A + B + C
• A + B’ + C’

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Product-of-sums canonical form

• A + B + C
• A + B’ + C’
• A’ + B + C’

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Product-of-sums canonical form

• A + B + C
• A + B’ + C’
• A’ + B + C’
• A’ + B’ + C

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Product-of-sums canonical form

• D= (A + B + C)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)

Inputs Output
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level implementations of F = AB 
+ C



Mapping between canonical forms

• Minterm to maxterm conversion
• Use maxterms whose indices do not appear in minterm expansion
• e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

• Maxterm to minterm conversion
• Use minterms whose indices do not appear in maxterm expansion
• e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7) 

• Minterm expansion of F to minterm expansion of F'
• Use minterms whose indices do not appear
• e.g., F(A,B,C) = Σm(1,3,5,6,7) F'(A,B,C) = Σm(0,2,4)

• Maxterm expansion of F to maxterm expansion of F'
• Use maxterms whose indices do not appear
• e.g., F(A,B,C) = ΠM(0,2,4) F'(A,B,C) = ΠM(1,3,5,6,7)



S-o-P, P-o-S, and 
de Morgan’s theorem
• Sum-of-products

• F' = A'B'C' + A'BC' + AB'C‘

• Apply de Morgan's
• (F')' = (A'B'C' + A'BC' + AB'C')'
• F = (A + B + C) (A + B' + C) (A' + B + C)

• Product-of-sums
• F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

• Apply de Morgan's
• (F')' = ( (A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C') )'
• F = A'B'C + A'BC + AB'C + ABC' + ABC



Programmable Logic Array
• The relationship between a truth table and a two-level 

representation allows us to generate a gate-level 
implementation of any set of logic functions.

• The sum-of-products corresponds to a programmable 
logic array.



Programmable Logic Array

The Design Warrior’s Guide to FPGAs
Devices, Tools, and Flows. ISBN 0750676043

Copyright © 2004 Mentor Graphics Corp. 
(www.mentor.com)
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Predefined AND array
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Predefined link
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l l l

w x y

N/A

N/A



Programmable Logic Array
• Efficient Characteristics

• only the truth table entries that produce a true value for at least one
output have any logic gates associated with them.

• each different product term will have only one entry in the PLA,
even if the product term is used in multiple outputs.



Programmable Logic Array
Inputs Outputs

A B C D E F
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 1



Programmable Logic Array



Incompleteley specified functions

• Example: binary coded decimal increment by 1
• BCD digits encode decimal digits 0 – 9 in bit patterns 0000 – 1001
A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these input patterns should 
never be encountered in practice 
– "don't care" about associated 
output values, can be exploited
in minimization

don't care (DC) set of W

on-set of W



Notation for incompletely specified functions

• Don't cares and canonical forms
• So far, only represented on-set
• Also represent don't-care-set
• Need two of the three sets (on-set, off-set, dc-set)

• Canonical representations of the BCD increment by 1 function:

• Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
• Z = Σ [ m(0,2,4,6,8) + d(10,11,12,13,14,15) ]

• Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
• Z = Π [ M(1,3,5,7,9) • D(10,11,12,13,14,15) ]



Simplification of two-level combinational logic
• Recall that canonical forms guarantee us 2 levels of logic.  However,

canonical forms do not guarantee us the most minimal version of the function.

• canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)

= (A + B + C) (A + B' + C) (A + B + C) (A' + B + C)
= (A + C) (B + C)



Simplification of two-level combinational logic

• The goal is to find a minimal sum of products or product of sums
realization
• Exploit don't care information in the process

• Algebraic simplification
• Not an algorithmic/systematic procedure
• How do you know when the minimum realization has been found?

• Computer-aided design tools
• Precise solutions require very long computation times, especially for

functions with many inputs (> 10)
• Heuristic methods employ "educated guesses" to reduce amount of

computation and yield good if not best solutions
• Hand methods still relevant

• To understand automatic tools and their strengths and weaknesses
• Ability to check results (on small examples)



A B F
0 0 1
0 1 0
1 0 1
1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A'B'+AB' = (A'+A)B' = B'

The uniting theorem
• Key tool to simplification: A (B' + B) = A
• Essence of simplification of two-level logic

• Find two element subsets of the ON-set where only one variable
changes its value – this single varying variable can be eliminated
and a single product term used to represent both elements



1-cube
X

0 1

Boolean cubes
• Visual technique for identifying when the uniting theorem

can be applied
• n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111



A B F
0 0 1
0 1 0
1 0 1
1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes) 
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables 
onto Boolean cubes
• Uniting theorem combines two "faces" of a cube into a 

larger "face"
• Example:

A

B

11

00

01

10

F



A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by 
the combination (OR) of the subcubes 
of lower dimensionality - note that “111”
is covered three times

Three variable example
• Binary full-adder carry-out logic

A

B C

000

111

101



F(A,B,C) = Σm(4,5,6,7)
on-set forms a square
i.e., a cube of dimension 2
represents an expression in one variable 
i.e., 3 dimensions  – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes
• Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001
010

011
110



m-dimensional cubes in a n-dimensional Boolean 
space
• In a 3-cube (three variables):

• 0-cube, i.e., a single node, yields a term in 3 literals
• 1-cube, i.e., a line of two nodes, yields a term in 2 literals
• 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
• 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

• In general,
• m-subcube within an n-cube (m < n) yields a term with n – m

literals



A B F
0 0 1
0 1 0
1 0 1
1 1 0

Karnaugh maps
• Flat map of Boolean cube

• Wrap–around at edges
• Hard to draw and visualize for more than 4 dimensions
• Virtually impossible for more than 6 dimensions

• Alternative to truth-tables to help visualize adjacencies
• Guide to applying the uniting theorem
• On-set elements with only one variable changing value are

adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1



Karnaugh maps (cont’d)
• Numbering scheme based on Gray–code

• e.g., 00, 01, 11, 10
• Only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D



Adjacencies in Karnaugh maps

• Wrap from first to last column
• Wrap top row to bottom row

000 010

001 011

110 100

111 101C
B

A

A

B C

000

111

101

100

001
010

011
110



Karnaugh map examples
• F =

• Cout =

• G(A,B,C) =

0 0

0 1

1 0

1 1Cin
B

A

1 1

0 0B

A

B’

AB + ACin + BCin

0 0

0 0

1 1

1 1C
B

A

A



Definition of terms for two-level simplification
• Implicant

• Single element of ON-set or DC-set or any group of these elements
that can be combined to form a subcube

• Prime implicant
• Implicant that can't be combined with another to form a larger

subcube
• Essential prime implicant

• Prime implicant is essential if it alone covers an element of ON-set
• Will participate in ALL possible covers of the ON-set
• DC-set used to form prime implicants but not to make implicant

essential
• Objective:

• Grow implicant into prime implicants (minimize literals per term)
• Cover the ON-set with as few prime implicants as possible

(minimize number of product terms)



0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1
B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to illustrate terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0
B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' + A'B'D

essential

minimum cover: 4 essential implicants

essential



We can obtain the
complement of the 
function by covering
the 0s instead of 1s

Karnaugh map examples
• f(A,B,C) = Σm(0,4,5,7)

• Can we also determine f’?
• Option 1:

• Option 2:

1 0

0 0

0 1

1 1C
B

A

AC + B’C’
+ AB’

1 0

0 0

0 1

1 1C
B

A

BC’ + A’C

We can obtain the 
complement by 
replacing 1's with 
0's and vice versa

0 1

1 1

1 0

0 0C
B

A

BC’ + A’C



C + B’D’

find the smallest number of the largest possible 
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example

• F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

D

A

B

D
A

B
C

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD



• f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
• without don't cares

• f = + B’C’D

Karnaugh maps: don’t cares

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A’D



Karnaugh maps: don’t cares

• f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
• f = A'D + B'C'D without don't cares
• f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more 
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0
B

C

A'D

by using don't care as a "1"
a 2-cube can be formed 
rather than a 1-cube to cover
this node

+ C'D



Algorithm for two-level simplification

• To get the minimum sum-of-products expression from a Karnaugh
map:
• Step 1: choose an element of the ON-set
• Step 2: find "maximal" groupings of 1s and Xs adjacent to that

element
• consider top/bottom row, left/right column, and corner adjacencies
• this forms prime implicants (number of elements always a power of 2)

• Repeat Steps 1 and 2 to find all prime implicants
• Step 3: revisit the 1s in the K-map

• if covered by single prime implicant, it is essential, and participates in
final cover

• 1s covered by essential prime implicant do not need to be revisited
• Step 4: if there remain 1s not covered by essential prime implicants

• select the smallest number of prime implicants that cover the remaining
1s



X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

3 primes around AB'C'D'

Algorithm for two-level simplification (example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1
B

C



we'll need a 4-variable Karnaugh map 
for each of the 3 output functions

Design example: two-bit comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B
C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table



A' B' D  +  A' C  +  B' C D

B C' D'  +  A C'  +  A B D'

LT =
EQ =

GT =

K-map for EQK-map for LT K-map for GT

Design example: two-bit comparator

0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0
B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1
B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0
B

C

= (A xnor C) • (B xnor D)

LT and GT are similar (flip A/C and B/D)

A' B' C' D'  +  A' B C' D  +  A B C D  +  A B' C D’



two alternative
implementations of EQ
with and without XNOR

XNOR is implemented with 
at least 3 simple gates

A B C D

EQ

EQ

Design example: two-bit comparator



block diagram
and

truth table

4-variable K-map
for each of the 4
output functions

A2 A1 B2 B1 P8 P4 P2 P1
0 0 0 0 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

1 1 0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1

Design example: 2x2-bit multiplier

P1
P2
P4
P8

A1
A2
B1
B2



K-map for P8 K-map for P4

K-map for P2 K-map for P1

Design example: 2x2-bit multiplier (cont’d)

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

0 1

1 1
A1

B2

0 0

0 1

0 0

1 0
B1

A2

0 1

0 0

1 0

0 0
A1

B2

0 0

0 0

0 0

1 1
B1

A2

0 1

0 1

0 1

1 0
A1

B2

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

1 0

0 0
A1

B2 P8 = A2A1B2B1

P4 = A2B2B1'
+ A2A1'B2

P2 = A2'A1B2
+ A1B2B1'
+ A2B2'B1
+ A2A1'B1

P1 = A1B1



I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X Xblock diagram

and
truth table

4-variable K-map for each of 
the 4 output functions

O1
O2
O4
O8

I1
I2
I4
I8

Design example: BCD increment by 1



O8 = I4 I2 I1 + I8 I1'
O4 = I4 I2' + I4 I1' + I4’ I2 I1
O2 = I8’ I2’ I1 + I2 I1'
O1 = I1'

O8 O4

O2 O1

Design example: BCD increment by 1 (cont’d)

0 0

0 0

X 1

X 0
I1

I8

0 1

0 0

X X

X X
I4

I2

0 0

1 1

X 0

X 0
I1

I8

0 0

1 1

X X

X X
I4

I2

0 1

0 1

X 0

X 0
I1

I8

1 0

0 1

X X

X X
I4

I2

1 1

0 0

X 1

X 0
I1

I8

0 0

1 1

X X

X X
I4

I2



Combinational Hardware: Decoders
• A decoder is a logic block that takes in an n-bit input and

selects from 2n outputs.
• One output is asserted for each possible input combination.
• Outputs are labeled Out0, Out1, …, Out2n – 1
• If the input is k, then Outk will be true



Combinational Hardware: Decoders

i2 i1 i0 o7 o6 o5 o4 o3 o2 o1 o0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

3-bit Decoder
3



Combinational Hardware: Multiplexors
• A multiplexor is a logic block that takes in n inputs and

selects one to be the output.
• Could also be called a selector
• The output is one of the inputs, selected by a control value.



Combinational Hardware: Multiplexors
• A multiplexor is a logic block that takes in n inputs and 

selects one to be the output.
• Could also be called a selector
• The output is one of the inputs, selected by a control value.



Combinational Hardware: Multiplexors
• Multiplexors can be created with an arbitrary number of

data inputs.

MULTIPLEXOR 1 output2n inputs

n selection lines



Combinational Hardware: Multiplexors

MULTIPLEXOR Output4 Inputs

S0 S1

I0

I1

I2

I3

S1 S0 Output
0 0
0 1
1 0
1 1

I0
I1
I2
I3



Combinational Hardware: Multiplexors
• Logic Gates
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