
ARITHMETIC

HARDWARE

Introduction

• Adders

• Half

• Full

• Ripple-Carry

• Carry-Lookahead

• Carry-Select

• Arithmetic Logic Unit

1-Bit Half Adder

• Sum = A’B + AB’

• Cout = AB

A B Sum Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

1-Bit Half Adder

1-Bit Half Adder

• Sum = A’B + AB’

= A XOR B

1-Bit Half Adder

• Block Diagram

1-Bit Full Adder

• Sum = A XOR B XOR Cin

• Cout = AB + ACin + BCin

Inputs Outputs Comments

A B Cin Cout Sum

0 0 0 0 0 0+0+0=00

0 0 1 0 1 0+0+1=01

0 1 0 0 1 0+1+0=01

0 1 1 1 0 0+1+1=10

1 0 0 0 1 1+0+0=01

1 0 1 1 0 1+0+1=10

1 1 0 1 0 1+1+0=10

1 1 1 1 1 1+1+1=11

Cout = A B + Cin (A or B) = A B + B Cin + A Cin

A

B

Cin
S

A

A

B

B

Cin
Cout

1-Bit Full Adder

• Standard approach

• 6 gates

• 2 XORs, 2 ANDs, 2 ORs

• Alternative implementation

• 5 gates

• half adder is an XOR gate and AND gate

• 2 XORs, 2 ANDs, 1 OR

A

B

A xor B

Cin

A xor B xor Cin

Half
Adder

Cout Cin (A xor B)A B

Sum

Cout

Half
Adder

Sum

Cout

1-Bit Full Adder

1-Bit Full Adder

Ripple-Carry Adder

• To add binary numbers of lengths greater than 1, we

cascade one bit adders together.

A B

Cout

Sum

Cin 0

A0 B0

Overflow

A B

Cout

Sum

Cin

A1 B1

A B

Cout

Sum

Cin

A2 B2

A B

Cout

Sum

Cin

A3 B3

S3 S2 S1 S0

Ripple-Carry Adder: Example

• 3+2 = 5

• 0011 + 0010 = 0101

A B

Cout

Sum

Cin 0

A0 B0

Overflow

A B

Cout

Sum

Cin

A1 B1

A B

Cout

Sum

Cin

A2 B2

A B

Cout

Sum

Cin

A3 B3

S3 S2 S1 S0

0 0 0 0 1 1 1 0

1

0

0

1

1

0

0

0

0

• Use adders to subtract with 2s complement representation
• A – B = A + (– B) = A + B' + 1

A B

Cout

Sum

Cin

0 1

0 = Add
1 = Subtract

A0 B0B0'

Sel

Overflow

A B

Cout

Sum

Cin

A1 B1B1'

Sel

A B

Cout

Sum

Cin

A2 B2B2'

Sel 0 1 0 10 1

A B

Cout

Sum

Cin

A3 B3B3'

Sel

S3 S2 S1 S0

Ripple-Carry Adder: Subtraction

• 7 – 6 = 1
• 0111 – 0110 = 0001

A B

Cout

Sum

Cin

0 1

A0 B0B0'

Sel

Overflow

A B

Cout

Sum

Cin

A1 B1B1'

Sel

A B

Cout

Sum

Cin

A2 B2B2'

Sel 0 1 0 10 1

A B

Cout

Sum

Cin

A3 B3B3'

Sel

S3 S2 S1 S0

Ripple-Carry Adder: Subtraction

0 0 1 1 1 0 1 1 0 1 0 1

1
1

1 1

1

1

01

0

1

01

0

1

10

0

1

0

Ripple-Carry Adder: Disadvantage

• Long Delay

• Carry bit may have to propagate from LSB to MSB

• Worst case delay for n-bit adder = 2n gate delays

COut3

A0

B0

1-bit Result0

COut0

A1

B1

1-bit Result1

CIn1

COut1

A2

B2

1-bit Result2

CIn2

A3

B3

1-bit Result3

CIn3 COut2

CIn0

CIn

COut

A

B

n

2 gates/level

Ripple-Carry Adder

• Long delay due to the propagation of carry from low to

high order stages

• The key to speeding up addition is determining carry

values sooner.

Carry-Lookahead

• Determine the CarryOut:
• Cout = AB + ACin + BCin = AB + Cin(A+B)

A B Cout Comment

0 0 0 Carry

terminate

0 1 Cin Carry

propagate

1 0 Cin Carry

propagate

1 1 1 Carry

generate

Carry-Lookahead Logic

• Carry generate: Gi = Ai Bi
• Must generate carry when A = B = 1

• Carry propagate: Pi = Ai + Bi
• Carry-in will equal carry-out here

• Cout can be re-expressed these terms:
• Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + Ci (Ai + Bi)
= Gi + Ci Pi

Carry-Lookahead Logic

• Assume we have a 4-bit adder:

• C1 = G0 + P0 C0

• C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

• C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

• C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

+ P3 P2 P1 P0 C0

• Each of the carry equations can be implemented with

two-level logic

• All inputs are now directly derived from data inputs and not from

intermediate carries

• this allows computation of all sum outputs to proceed in parallel

G3

C0C0

C0

C0
P0P0

P0

P0

G0
G0

G0

G0
C1

P1

P1

P1

P1

P1

P1 G1

G1

G1

C2
P2

P2

P2

P2

P2

P2

G2

G2

C3

P3

P3

P3

P3

C4

Pi @ 1 gate delay

Ci
Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay

increasingly complex

logic for carries

Carry-Lookahead Implementation

• Adder with propagate and generate outputs

Partial Carry Lookahead Adder

• Very expensive to build “full” carry lookahead adder

• Imagine the length of the equation for Cin31!

• In practice:

• Connect several N-bit lookahead adders

• Example: four 8-bit carry lookahead adders can form

a 32-bit partial carry lookahead adder

8-bit Carry

Lookahead

Adder

C0

8

88

Result[7:0]

B[7:0]A[7:0]

8-bit Carry

Lookahead

Adder

C8

8

88

Result[15:8]

B[15:8]A[15:8]

8-bit Carry

Lookahead

Adder

C16

8

88

Result[23:16]

B[23:16]A[23:16]

8-bit Carry

Lookahead

Adder

C24

8

88

Result[31:24]

B[31:24]A[31:24]

4-Bit Adder
[3:0]

C0C4

4-bit adder
[7:4]

1C8

0C8

five
2:1 mux

01010101

adder
low

adder
high

01

4-bit adder
[7:4]

C8 S7 S6 S5 S4 S3 S2 S1 S0

Carry-Select Adder

• Redundant hardware to make carry calculation go faster
• Compute two high-order sums in parallel while waiting for carry-in

• One assuming carry-in is 0 and another assuming carry-in is 1

• Select correct result once carry-in is finally computed

Arithmetic Logic Unit

• The Arithmetic Logic Unit (ALU) is the brawn of the

computer

• Performs arithmetic operations (addition, subtraction)

• Performs logical operations (AND, OR, NOR)

• Performs logical comparisons (Less Than, Equal To)

Arithmetic Logic Unit

• We will need (at least) a 32-bit ALU

• Connect 32 1-bit ALUs together

AND, OR

• Uses: AND gate, OR gate, 2:1 mux

Addition

• Add a 1-bit full adder

Addition

• This 1-bit ALU will perform AND, OR, and ADD

Subtraction

• (A – B) is equivalent to A + (–B)

• Take 2’s complement of B and add A

• 2’s Complement: invert every bit and add 1

• To invert B

• Add a 2:1 mux that chooses between b and b’

• To add 1

• Set the CarryIn to 1 instead of 0

Subtraction

NOR

• NOR = NOT (A OR B)

= (A + B)’

= A’*B’

= A’ AND B’

• We already have an AND gate and an inverter for B

• Add an inverter for A

NOR

Set on Less Than

• Set on Less Than (slt) is a MIPS instruction

• For inputs A and B it produces 1 if A<B, 0 otherwise

• All bits are set to zero except for the least significant

• Least significant bit determined by the result of A<B

Set on Less Than

• For our ALU to perform this operation we need:

• A bigger mux

• Input for the slt (called Less)

• Method for determining if A<B

Set on Less Than

• A < B

• A-B < 0

• Subtract and check the sign of the result

• 1 if less than 0

• 0 otherwise

Set on Less Than

• Bits 1-31: Less = 0

• Bit 0: sign bit of A-B

Set on Less Than

• “Set” generate by most significant bit:

Equal To

• A = B

• A-B = 0

• Subtract and check to see if all bits are zero

• NOR all bits

Equal To

• Zero Detection Logic is just a NOR gate

• Output true (1) only if all inputs zero
CIn0

A0

B0

1-bit

ALU

Result0

COut0

A1

B1

1-bit

ALU

Result1
CIn1

COut1

A2

B2

1-bit

ALU

Result2
CIn2

COut2

A3

B3

1-bit

ALU

Result3
CIn3

COut3

Zero

A 32-Bit ALU

• Connect:

• 31 ALUs without

overflow detection

• 1 ALU with

overflow detection

(MSB)

A 32-Bit ALU

• Subtraction:

• Both CarryIn and

Binvert are 1

• Combine into 1 signal

“Bnegate”

A 32-Bit ALU

• Set on Less Than:

• Less = 0

Bits 1-31

• Less = sign bit

Bit 0

A 32-Bit ALU

• Universal symbol for ALU

