ARITHMETIC
HARDWARE

Introduction

- Adders
- Half
- Full
- Ripple-Carry
- Carry-Lookahead
- Carry-Select

- Arithmetic Logic Unit

S
1-Bit Half Adder

>

A 1B |sum____|Cout ___
0

, B O O
, O Kk O
o L O
, O O

- Sum =AB + AB’
- Cout =AB

1-Bit Half Adder

D ab carry

e e . . = = = —— = ——— = = ————— — ———— = ——— —

b ab + ab
_ E) — sum
a :

S
1-Bit Half Adder

- Sum =AB + AB’
=AXOR B

pEL carry

:]D sum

S
1-Bit Half Adder

- Block Diagram

+ — Sum

CarryOut

S
1-Bit Full Adder

- Sum = A XOR B XOR Cin
- Cout = AB + ACin + BCin

Outputs

0 0 0 0 0 0+0+0=00
0 0 1 0 1 0+0+1=01
0 1 0 0 1 0+1+0=01
0 1 1 1 0 0+1+1=10
1 0 0 0 1 1+0+0=01
1 0 1 1 0 1+0+1=10
1 1 0 1 0 1+1+0=10
1 1 1 1 1 1+1+1=11

S
1-Bit Full Adder

- Standard approach
- 6 gates
- 2 XORs, 2 ANDs, 2 ORs

Cout=AB+Cin(AorB)=AB+B Cin+ACin

S
1-Bit Full Adder

- Alternative implementation
- 5 gates
- half adder is an XOR gate and AND gate
- 2 XORs, 2 ANDs, 1 OR

A xor B SOm A xor B xor Cin sSum

Half Half

Adder Adder -
B Cout AB Cout|_CIN (Axor B)

- [

S
1-Bit Full Adder

-
Ripple-Carry Adder

- To add binary numbers of lengths greater than 1, we
cascade one bit adders together.

A3 B3 A2 B2 Al Bl AO BO
A B A B A B A B
*—Cout Cin Cout Cin Cout Cin Cout Cine—0
Sum Sum Sum Sum
Iy | | |
S3 S2 S1 SO

Overflow

-
Ripple-Carry Adder: Example

.3+2=5
- 0011 + 0010 = 0101

0 A3 B30 o0A2 B2pg 1Al Bl1 1A0 BOO

\4 \4 \4 \4 \ 4 \4 v v

0 A B 0 A B . A B 0 A B
«—Cout Cin Cout Cin Cout Cin Cout Cine—0
| Sum Sum Sum Sum

l l l

_lj \4
3 S2 S1 SO
0 1
Overflow 0 1
0

Ripple-Carry Adder: Subtraction

- Use adders to subtract with 2s complement representation

-A-B = A+(-B) A+B +1
A3 B3B3’ A2 B2B2' Al B1B1' A0 BOBO'
01se| 0 1]Sel 0 1]Sel 0 1]Sel
A B A B A B A B
«—Cout Cin Cout Cin Cout Cin Cout Cin
| Sum Sum Sum Sum
S3 S2 S1 0

LD
Overflowv

0 = Add
1 = Subtract

-
Ripple-Carry Adder: Subtraction

.7-6=1
- 0111 - 0110 = 0001

0 01 1 10 1 10 1 01
A3 B3B3 A2 B2B2' Al B1BT1 AO BOBO'

Sel 0 1]Sel Sel

01

Oy vl lv v O 1lv v0O ly vl
A B A B A B A B

<L(:out Cin Cout Cin Cout Cin Cout Cin 1

| Sum Sum Sum Sum

l l l

_lj \4
3 S2 S1 SO
0 0 0 1
Overflow
0

-
Ripple-Carry Adder: Disadvantage

- Long Delay
- Carry bit may have to propagate from LSB to MSB

- Worst case delay for n-bit adder = 2n gate delays
CInO l

A 1-bit — Result0 ClIn

I

BO
Cinl ¢ COutO A __\9_7
Al—» ‘

1-bit | Resultl

BI —
: Cinz__} COutl —

2 gates/level

A2—» i
o3 1-bit — Result2
Cin3 4 COut2 B > ! cout
A3— i
iy 1-bit — Result3

l COut3

-
Ripple-Carry Adder

- Long delay due to the propagation of carry from low to
high order stages

- The key to speeding up addition is determining carry
values sooner.

-
Carry-Lookahead

- Determine the CarryOut:
Cout = AB + ACin + BCin = AB + Cin(A+B)

IE

Carry
terminate

0 1 Cin Carry
propagate

1 0 Cin Carry
propagate

1 1 1 Carry
generate

-
Carry-Lookahead Logic

- Carry generate: Gi = Ai Bl
- Must generate carry whenA=B =1

Carry propagate: Pi=Ai + Bi
- Carry-in will equal carry-out here

Cout can be re-expressed these terms:
- Ci+1 =AiBi+AiCi+BiCi
= Ai Bi + Ci (Ai + Bi)
=Gi+ CiPi

-
Carry-Lookahead Logic

- Assume we have a 4-bit adder:
Cl1=G0+P0CO
C2=G1+P1C1l=G1+P1G0+P1P0CO
C3=G2+P2C2=G2+P2G1+P2P1GO0+P2P1P0CO

C4=G3+P3C3=G3+P3G2+P3P2G1+P3P2P1GO0O
+ P3 P2 P1P0CO

- Each of the carry equations can be implemented with
two-level logic

- All inputs are now directly derived from data inputs and not from
Intermediate carries

this allows computation of all sum outputs to proceed in parallel

Carry-Lookahead Implementation

- Adder with propagate and generate outputs

Ai
Bi

Ci

PE—

O\

CO0 —
PO — — C1
) -

GO

CO —
PO —

P1 —

9?: —— —C2
G1

CO
PO_
P1_]
P2—

GO
Pl
P2_]

Gl
P2

Si @ 2 gate delays

%/D L} Pi @ 1 gate delay
) >

— Gi @ 1 gate delay

=

G2

[_133>'

increasingly complex
logic for carries

CO —
PO —
Pl —
P2 —
P3 —
GO —
P1 —
P2 —

C3 p3 —

3_

j‘_
LI

S

G2 —

G3

P3 —

-
Partial Carry Lookahead Adder

- Very expensive to build “full” carry lookahead adder
- Imagine the length of the equation for Cin31!

- In practice:
- Connect several N-bit lookahead adders
- Example: four 8-bit carry lookahead adders can form
a 32-bit partial carry lookahead adder
A[31:24] B[31:24] A[23:16] B[23:16] A[15:8] B[15:8] A[7:0] B[7:0]
A O G GO G S S &

8-bit Carry | 94| 8-bit Carry| ~qg| 8-bit Carry| gl 8-bit Carry| g
Lookahead[* Lookahead[* Lookahead[* Lookahead[*—
Adder Adder Adder Adder

T S

Result[31:24] Result[23:16] Result[15:8] Result[7:0]

-
Carry-Select Adder

- Redundant hardware to make carry calculation go faster
- Compute two high-order sums in parallel while waiting for carry-in

- One assuming carry-in is O and another assuming carry-in is 1

- Select correct result once carry-in is finally computed

five
2:1 mux

C8 4-bit adder 1
[7:4]
Ce A-bit adder 0
[‘ [7:4] D
v v v v v v v v v
10(20(1201101(10 C4

adder

bob ok & &

bbbk

high
adder
low
4-Bit Adder Co
[3:0] ¢

-
Arithmetic Logic Unit

- The Arithmetic Logic Unit (ALU) is the brawn of the
computer
- Performs arithmetic operations (addition, subtraction)
- Performs logical operations (AND, OR, NOR)
- Performs logical comparisons (Less Than, Equal To)

-
Arithmetic Logic Unit

- We will need (at least) a 32-bit ALU
- Connect 32 1-bit ALUs together

AND, OR

- Uses: AND gate, OR gate, 2:1 mux

Operlation

= o)
| __+ Result
b —E—w

e
Addition

- Add a 1-bit full adder

e
Addition

- This 1-bit ALU will perform AND, OR, and ADD

Operation
Carryln ‘

¥

ate— N\ | /D

.—
i } 1 = Hesult

Subtraction

- (A—B) is equivalent to A + (—B)
- Take 2's complement of B and add A

- 2’'s Complement: invert every bit and add 1

- To invert B
- Add a 2:1 mux that chooses between b and b

- Toadd 1
- Set the CarryIn to 1 instead of O

J

Subtraction

Binvert Operation

Carryln |

a — N\

.—
i } 1 = Hesult

-
NOR

- NOR = NOT (A OR B)
= (A+B)
= A*B’
= A'AND B’

- We already have an AND gate and an inverter for B
- Add an inverter for A

NOR

Ainvert Operation

Binvert Carryln

.—
1 = Besult

CarryQOut

Set on Less Than

- Set on Less Than (slt) is a MIPS instruction
- For inputs A and B it produces 1 if A<B, 0 otherwise

- All bits are set to zero except for the least significant
- Least significant bit determined by the result of A<B

Set on Less Than

- For our ALU to perform this operation we need:
- A bigger mux
- Input for the slt (called Less)
- Method for determining if A<B

Set on Less Than

-A<B
-A-B<O0
- Subtract and check the sign of the result

- 1 if less than O
- 0 otherwise

Set on Less Than

- Bits 1-31: Less =0
- Bit O: sign bit of A-B

Airvart Oiparation Ainvert Operation
| Binvert Carryin | | Binvert Carmryin |
¥ /_l\ t
S e W N o (e — |
r"‘\ 1 _\ ,
Jr— = Hasult ‘_ + Result
b , f‘n-w - b s fo] >
+ 2 . 2
Lass 3 Set 3
N/ . __/

1 \
CamyOut CarryOut

Set on Less Than

- "Set” generate by most significant bit:

Ainvart Oparation
| Binvert Carryln |
a { o | . ™ .-"I} R
1
._
) T
i *‘7 = Hasult
b —1 .
+ 2
1
Less = 3
M
I = Sot
Ovarilow = COwarflow
defection

-
Equal To

-A=B

-A-B=0
- Subtract and check to see If all bits are zero
- NOR all bits

-
Equal To

- Zero Detection Logic is just a NOR gate

- Output true (1) only if all inputs zero
CInO

l

AO—> 1_b|t ReSUItO
BO L_ALU
CIn1l COutO

\4

Al ___ 1-bit Resultl :
BT L ALU S —
CIn2 COutl

A2 1t LResult2
B2 L_ALU

A3 1-bit Result3
B3 —L_ALU

lCOut3

A\ 4

Zero

v

\4

A 32-Bit ALU

- Connect:
- 31 ALUs without
overflow detection

- 1 ALU with
overflow detection
(MSB)

Ainvert

Bnegate

Operation

P

Al —

bl —=

Carryln
AlUo
Less

CarryCut

Resultd

al —|
b1 —

[—

Carryln
ALU1
Lezg
CarryCut

Result

82—
b2 —

0—=

Carryln
ALUZ
Less

CarryOut

Resuli2

. Carryln i

| ==l

adi—=
b31—

Carryln
ALLIS
Less

Besult3l 1.| .

= Cherflow

A 32-Bit ALU

- Subtraction:

- Both Carryln and
Binvert are 1

- Combine into 1 signal
“‘Bnegate”

Ainvert

Bnegate

Operation

P

Al —

bl —=

Carryln
AlUo
Less

CarryCut

Resultd

al —|
b1 —

[—

Carryln
ALU1
Lezg
CarryCut

Result

82—
b2 —

0—=

Carryln
ALUZ
Less

CarryOut

Resuli2

. Carryln i

| ==l

adi—=
b31—

Carryln
ALLIS
Less

Besult3l 1.| .

= Cherflow

A 32-Bit ALU

- Set on Less Than:

- Less=0
Bits 1-31

- Less = sign bit
Bit O

Ainvert

Bnegate

Operation

P

Al —

bl —=

Carryln
AlUo
Less

CarryCut

Resultd

al —|
b1 —

[—

Carryln
ALU1
Lezg
CarryCut

Result

AP —]
b2 —=

0—»

Carryln
ALUZ
Less

CarryOut

Resuli2

. Carryln i

| ==l

adil—=
b31—

Carryln
ALLIS
Less

Besult3l 1.| .

= Cherflow

A 32-Bit ALU

- Universal symbol for ALU

ALU operation

A

b —e

> ALU

—» Zero
L Result
— Overflow

e

