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• Adders

• Half 

• Full

• Ripple-Carry

• Carry-Lookahead

• Carry-Select

• Arithmetic Logic Unit



1-Bit Half Adder

• Sum = A’B + AB’

• Cout = AB

A B Sum Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1



1-Bit Half Adder



1-Bit Half Adder

• Sum = A’B + AB’

= A XOR B



1-Bit Half Adder

• Block Diagram



1-Bit Full Adder

• Sum = A XOR B XOR Cin

• Cout = AB + ACin + BCin

Inputs Outputs Comments

A B Cin Cout Sum

0 0 0 0 0 0+0+0=00

0 0 1 0 1 0+0+1=01

0 1 0 0 1 0+1+0=01

0 1 1 1 0 0+1+1=10

1 0 0 0 1 1+0+0=01

1 0 1 1 0 1+0+1=10

1 1 0 1 0 1+1+0=10

1 1 1 1 1 1+1+1=11



Cout = A B + Cin (A or B) = A B + B Cin + A Cin

A

B

Cin
S

A

A

B

B

Cin
Cout

1-Bit Full Adder

• Standard approach

• 6 gates

• 2 XORs, 2 ANDs, 2 ORs



• Alternative implementation

• 5 gates

• half adder is an XOR gate and AND gate

• 2 XORs, 2 ANDs, 1 OR

A

B

A xor B

Cin

A xor B xor Cin

Half
Adder

Cout Cin (A xor B)A B

Sum

Cout

Half
Adder

Sum

Cout

1-Bit Full Adder



1-Bit Full Adder



Ripple-Carry Adder

• To add binary numbers of lengths greater than 1, we 

cascade one bit adders together. 

A B
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Ripple-Carry Adder: Example

• 3+2 = 5

• 0011 + 0010 = 0101

A B

Cout

Sum

Cin 0

A0 B0

Overflow

A B
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Sum
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A1 B1

A B
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• Use adders to subtract with 2s complement representation
• A – B  =   A + (– B)   =   A + B' + 1

A B

Cout

Sum

Cin

0 1

0 = Add
1 = Subtract

A0 B0B0'

Sel

Overflow

A B
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Sel

A B

Cout

Sum

Cin

A2 B2B2'

Sel 0 1 0 10 1
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S3 S2 S1 S0

Ripple-Carry Adder: Subtraction



• 7 – 6 = 1
• 0111 – 0110 = 0001
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Ripple-Carry Adder: Subtraction
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Ripple-Carry Adder: Disadvantage

• Long Delay

• Carry bit may have to propagate from LSB to MSB

• Worst case delay for n-bit adder = 2n gate delays

COut3
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Ripple-Carry Adder

• Long delay due to the propagation of carry from low to 

high order stages

• The key to speeding up addition is determining carry 

values sooner.



Carry-Lookahead

• Determine the CarryOut:
• Cout = AB + ACin + BCin = AB + Cin(A+B)

A B Cout Comment

0 0 0 Carry

terminate

0 1 Cin Carry

propagate

1 0 Cin Carry

propagate

1 1 1 Carry 

generate



Carry-Lookahead Logic

• Carry generate:  Gi = Ai Bi
• Must generate carry when A = B = 1

• Carry propagate:  Pi = Ai + Bi
• Carry-in will equal carry-out here

• Cout can be re-expressed these terms:
• Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + Ci (Ai + Bi)
= Gi + Ci Pi



Carry-Lookahead Logic

• Assume we have a 4-bit adder:

• C1 = G0 + P0 C0

• C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

• C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

• C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0                                                                        

+ P3 P2 P1 P0 C0

• Each of the carry equations can be implemented with 

two-level logic

• All inputs are now directly derived from data inputs and not from 

intermediate carries

• this allows computation of all sum outputs to proceed in parallel
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increasingly complex

logic for carries

Carry-Lookahead Implementation

• Adder with propagate and generate outputs



Partial Carry Lookahead Adder

• Very expensive to build “full” carry lookahead adder

• Imagine the length of the equation for Cin31!

• In practice:

• Connect several N-bit lookahead adders

• Example: four 8-bit carry lookahead adders can form

a 32-bit partial carry lookahead adder

8-bit Carry

Lookahead

Adder

C0

8

88

Result[7:0]

B[7:0]A[7:0]

8-bit Carry

Lookahead

Adder

C8

8

88
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B[15:8]A[15:8]

8-bit Carry

Lookahead
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4-Bit Adder
[3:0]

C0C4

4-bit adder
[7:4]

1C8

0C8

five
2:1 mux

01010101

adder 
low

adder
high

01

4-bit adder
[7:4]

C8 S7 S6 S5 S4 S3 S2 S1 S0

Carry-Select Adder

• Redundant hardware to make carry calculation go faster
• Compute two high-order sums in parallel while waiting for carry-in

• One assuming carry-in is 0 and another assuming carry-in is 1

• Select correct result once carry-in is finally computed



Arithmetic Logic Unit

• The Arithmetic Logic Unit (ALU) is the brawn of the 

computer

• Performs arithmetic operations (addition, subtraction)

• Performs logical operations (AND, OR, NOR)

• Performs logical comparisons (Less Than, Equal To)



Arithmetic Logic Unit

• We will need (at least) a 32-bit ALU

• Connect 32 1-bit ALUs together



AND, OR

• Uses: AND gate, OR gate, 2:1 mux



Addition

• Add a 1-bit full adder 



Addition

• This 1-bit ALU will perform AND, OR, and ADD



Subtraction

• (A – B) is equivalent to A + (–B)

• Take 2’s complement of B and add A

• 2’s Complement: invert every bit and add 1

• To invert B

• Add a 2:1 mux that chooses between b and b’

• To add 1

• Set the CarryIn to 1 instead of 0



Subtraction



NOR

• NOR = NOT (A OR B)

= (A + B)’

= A’*B’

= A’ AND B’

• We already have an AND gate and an inverter for B

• Add an inverter for A



NOR



Set on Less Than

• Set on Less Than (slt) is a MIPS instruction

• For inputs A and B it produces 1 if A<B, 0 otherwise

• All bits are set to zero except for the least significant

• Least significant bit determined by the result of A<B



Set on Less Than

• For our ALU to perform this operation we need:

• A bigger mux

• Input for the slt (called Less)

• Method for determining if A<B



Set on Less Than

• A < B

• A-B < 0

• Subtract and check the sign of the result

• 1 if less than 0

• 0 otherwise



Set on Less Than

• Bits 1-31: Less = 0

• Bit 0: sign bit of A-B



Set on Less Than

• “Set” generate by most significant bit:



Equal To

• A = B

• A-B = 0

• Subtract and check to see if all bits are zero

• NOR all bits



Equal To

• Zero Detection Logic is just a NOR gate

• Output true (1) only if all inputs zero
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A 32-Bit ALU

• Connect:

• 31 ALUs without 

overflow detection

• 1 ALU with 

overflow detection 

(MSB)



A 32-Bit ALU

• Subtraction:

• Both CarryIn and

Binvert are 1

• Combine into 1 signal

“Bnegate”



A 32-Bit ALU

• Set on Less Than:

• Less = 0 

Bits 1-31

• Less = sign bit

Bit 0



A 32-Bit ALU

• Universal symbol for ALU


