
Mississippi State University Center for Cyber Innovation
1

J. A. “Drew” Hamilton, Jr., Ph.D.
Director, Distributed Analytics & Security Institute

Director, Center for Cyber Innovation
Professor, Computer Science & Engineering
Fellow, Society for Modeling and Simulation

CCI
Post Office Box 9627
Mississippi State, MS 39762

Voice: (662) 325-2294
Fax: (662) 325-7692
hamilton@cci.msstate.edu

Mississippi State University Center for Cyber Innovation
2

Simulation Security: Securing the
Future of Simulation

What if a simulation is
too good?

Mississippi State University Center for Cyber Innovation
3

Outline

• What is simulation security and why should you
care?

• A case study in simulation software vulnerability
analysis.

• Simulation security state of the art.
• Conclusions and a proposed way ahead.

Mississippi State University Center for Cyber Innovation
4

Mississippi State University Center for Cyber Innovation
5

Simulation Customers in the USA

• Department of Defense
• Walt Disney Corp.

Mississippi State University Center for Cyber Innovation
6

The Missile Defense Agency Asked:

• What is the impact
of sharing missile
defense simulation
software with our
Allies?

• What exactly are we
sharing?

• What sensitive
information can be
gleaned from the
internals of the
software?

Mississippi State University Center for Cyber Innovation
7

Typical DoD Security Model
Weapons Training

• Assumptions
– Calculating weapons effects are

already well known, only the actual
weapons capabilities are classified

– The calculations themselves do
not reveal sensitive information
about training, tactics and
procedures used in weapons
targeting

Weapons Effects
Calculations

notional weapons data unclassified results

actual weapons data classified results

Is this model appropriate for missile defense simulations?

Mississippi State University Center for Cyber Innovation
8

Attacking Simulations as Software

• OBJECTIVES
– Look for the underlying models the simulation is constructed from
– Compromise training, tactics and procedures used in missile

defense
– Compromise weapons and systems performance data

Simulation
Software
Program

Simulation
Outputs

Simulation
Inputs (files or

interactive)

1. Sensitivity Analysis of
output based on
input changes

2. One “off” test cases to
examine relationships

1. Exploitation of operating
system vulnerabilities

2. Analysis of installed files
3. Decompilation and

disassembly of targeted
executables

1. Experimentation w/“open
source” system data

2. Privilege escalation
via buffer overflows

3. Analysis of bounds
checking if implemented

Mississippi State University Center for Cyber Innovation
9

High Assurance Vulnerability Assessment

• Line-by-Line verification of source code
• Professional and/or contract decompilation of

executables
• Complete review of published documentation
• Analysis of simulation runs to evaluate training,

tactics and procedures
• Open source review of weapons and systems

data
• Analysis of degree of parameterization

A Software Engineering Approach to VA

Mississippi State University Center for Cyber Innovation
10

Challenges in checking source code

Mississippi State University Center for Cyber Innovation
11

Mississippi State University Center for Cyber Innovation
12

Review of published documentation

• Conducted a major review of the more than one
thousand pages of documentation.

• Concluded that the simulation indeed has a high
degree of parameterization.

• While the physics calculations are sometimes
complex, there was nothing to indicate any
restricted or sensitive information.

• Documentation appears very consistent with the
performance of the program.

Mississippi State University Center for Cyber Innovation
13

Open source review of weapons and
systems data

• Classify results into four categories
– Located: values were located in open sources
– Derived: values derived from known values or other

derived values
– Guessed: parameters for which researcher input an

arbitrary but seemingly reasonable value
• Important to note that researcher was a computer scientist,

not a subject matter expert
– Default: default values in GUI used in simulation run

Mississippi State University Center for Cyber Innovation
14

Security by Obscurity
• Hide the source code and only release the

executable.
• False belief that code compiled into binary

remains secret just because the source is not
available.
– Java byte code is particularly vulnerable

• Netscape POP (post office protocol) 1999
– password with weak cryptography
– stored in windows registry
– experimentation with XOR on password strings

• pattern detected
• encryption algorithm reverse engineered

Mississippi State University Center for Cyber Innovation
15

Ken Thompson

• Lead developer of UNIX in early 1970’s
• Installed back door that automatically added his

account and password to every UNIX system
• Back door was not in the source code it was

hidden in the binary code that was needed to
build UNIX

• Back door automatically propagated itself into
future UNIX distributions

• Revealed 14 years later in his ACM Turing
Awards acceptance speech

• http://www.acm.org/classics/sep95

Mississippi State University Center for Cyber Innovation
16

C, an average programming language

• C is inherently unsafe – programs
may overflow buffers at will.

• No runtime checks that prevent
writing past the end of a buffer.

• Reading or writing past the end of a
buffer can cause a number of
diverse behaviors
– Programs may act in strange ways
– Programs may fail completely
– Programs may proceed without any

noticeable difference in execution.

Mississippi State University Center for Cyber Innovation
17

Notes from the Cult of the Dead Cow
• To get this to happen, I fed a

string of 0x80 bytes into a
popular conference package
called 'Microsoft Netmeeting'
through the address field of
a 'speeddial' shortcut.

• EIP happens to be
0x80808080.
– Guess what?
– That's good!
– I found a stack overflow!

• Now all I have to do is craft
my exploit string to have
some fun code inside, and
tweak four of those 0x80
bytes to point to my exploit
string.

http://www.cultdeadcow.com/cDc_files/cDc-351
Warning: Foul language on this site

buffer overflow tutorial

Mississippi State University Center for Cyber Innovation
18

Finding our own buffer overflow

Mississippi State University Center for Cyber Innovation
19

Reverse Engineering

• Machine code analysis
• Core Dumps
• Reverse Engineering Tools
• Debuggers usually have disassemblers

– takes machine code and translates into assembly language
– C code versus assembly

• loops versus counters and jumps
• Decompilers are not as mature as dissassemblers

– attempt to convert machine language into high-level language
constructs

– JVM programs much easier to reconstruct than “hand coded”
assembly language

– decompilation performance can be enhanced if the program is
compiled with debugging options on

• Assume that binary code can be reconstructed

Mississippi State University Center for Cyber Innovation
20

Copy Protection

• Tradeoff – protection of intellectual property versus
hassling legitimate users
– OPNET Example

• License Keys – A psychological deterrent
– Encryption Keys

• use 36 character set less “1” “l” “0” “O” = 32 characters
• Use CBC and say “Blowfish” and produce valid keys
• Each key is a counter concatenated with a fixed binary string,

encrypted and converted base 32
– Checking the license key for validity

• decode the base 32 string, decrypt the binary with the stored
encryption key and to see that the last 12 bytes are equal to our
stored binary string

• Force software to run off of distribution CDs
• Theoretically, no media is “copy proof.”

Mississippi State University Center for Cyber Innovation
21

Code Obfuscation

• Anti-tampering
– Checksums
– Check for debuggers

• Running debuggers reset the instruction cache on every operation
• Check for this condition and jump your code to crash the program

• Obfuscation
– Rename all variables in code to arbitrary names
– Automated code obfuscation still an open research area
– JVM retains much more data than other HLLs
– Makes programs harder to maintain

Mississippi State University Center for Cyber Innovation
22

Obfuscation Techniques
• Add code that never executes or that does nothing

– Make calculations more complex
• Move code around

– Spread related functions as far apart as possible
– Fake “encapsulation”

– Combine multiple unrelated functions into a single function
• Encode your code oddly

– Picking strings directly out of memory is easy
– Convert strings to odd character sets, only make strings

printable when necessary
• Encrypt program parts

– Generally “low grade” because of performance considerations
– Data versus operation encryption
– Hex editor for manual encryption
– Encryption of padding

Mississippi State University Center for Cyber Innovation
23

Desk check of selected source code

• Source code for some simulation modules shipped to US
users.

• Desk Check done in two parts:
– First finding security vulnerabilities that might allow a third

party to take control of the simulation executable.
• No unbounded buffers located
• Tab key buffer overflow found earlier

– Second search sensitive information contained in the
simulation source code.

• Conditional and assignment statements searched
• Keyword search

• Results submitted to MDA
– Working in a classified environment, unclear how sensitive our

findings were.

Mississippi State University Center for Cyber Innovation
24

Disassembly of executables

• 440,168k of assembly code was generated from three
executable files totaling 102,736k in size.

• This volume of generated assembly code represents
approximately 9.3 million lines of assembly code.

• Disassembled code was successfully reassembled and
executed.

• 400 MHz Intel Celeron processor with 128 MB of RAM.

Executable Executable size Assembly size

Simulation 25792k 131624k

Kernel Interface 39440k 141016k

Simulation GUI 37504k 167528k

Mississippi State University Center for Cyber Innovation
25

Analyzing the disassembled code
• The simulation assembly code totaled about 500MB in size, and

was therefore difficult to work with.
• With sufficient resources, the large amount of assembly code

could be understood and mapped out.
– Also, given the number of viable decompilers that are targeted at

specific compilation platforms, along with available theory on how
to attempt such focused efforts [Housel 1974, Breuer 1994, Weide
1995], it would be possible for an organization to implement their
own custom decompiler specifically tasked with compromising a
single executable.

– Things that might thwart such an effort would be the use of
optimizing (or other obfuscating) compilers.

– A failed disassembly attempt using PE Explorer did reveal a
compiler version number “6.0.” This led to successfully guessing
the compiler used MS Visual C++ 6.0.

Mississippi State University Center for Cyber Innovation
26

Stripping the executables

• At the end of the analysis of the compiled executables, it
was discovered that neither the Windows nor the Solaris
versions of the simulation had been stripped of debugging
information.

• This is particularly disturbing given the information that
could potentially be obtained simply by running the
application through a debugger.

• For example, by running the GUI program through
Microsoft’s Visual C++ 6.0 Debugger, the names of several
different functions could be found.
– In addition to the function names, the number and type of

arguments required by the function were also found.
– This could greatly assist anyone seeking to compromise the

simulation code, even if they did not have access to anything
other than the compiled executables.

Mississippi State University Center for Cyber Innovation
27

Decompilation/Analysis of Binaries

• Approximately 27 megabytes of string literals
were extracted from the three executables.

• Just under 1.6 million individually discernable
strings greater than or equal to four characters in
length were generated.
– Note that a large number of these strings are “trash”

strings having no English-language meaning, or are
object-file specific strings which have only partial
English-language meaning, and which are used in
computing the offsets of individual data members in
certain aggregate data types.

Mississippi State University Center for Cyber Innovation
28

Analysis of the Binaries
• Of the slightly less than 1.6 million strings literals found above,

less than one-third, or about 450,000, of these were found in the
initialized data space of the executable.
– This included what appeared to be function names and

variable/member names.
• Between 32,000 and 36,000 of these string literals appeared to be

format strings of the type used in standard I/O print statements.
– Error statements such as “Error, cannot open file %s for reading.”

or “MAJOR ERROR!!! [System/Ruleset/Sensor/Com Device/Jammer]
%s does not exist for opfac %s,” to other informational statements
such as, “The following Platforms have the '%s' system type:” or
“The following Systems use the '%s' system as a weapon …”

– No weapon-specific string literals were found in this manner, except
a few instances of “PATRIOT” located in an error messages such
as, “Missile type %s not found in PATRIOT missile preference
table.”

– No references were found which contained the strings “SCUD,”
“THAAD,” or “Aegis.”

Mississippi State University Center for Cyber Innovation
29

PE File Format
ADDRESS DESCRIPTION

0 +---------------------------

DOS Header [64 bytes]

63 +---------------------------

64 +---------------------------

MS-DOS Stub [57 bytes]

120 +---------------------------

121 +---------------------------

(Not Known) [7 bytes]

127 +---------------------------

128 +---------------------------

PE Signature [4 bytes]

131 +---------------------------

132 +---------------------------

File Header [20 bytes]

151 +---------------------------

152 +---------------------------

Optional Header [224 bytes]

375 +---------------------------

376 +---------------------------

Section Table [200 bytes]

575 +---------------------------

576 +---------------------------

(Zero filled) [448 bytes]

1023 +---------------------------

1024 +---------------------------

.text [594944 bytes]

595967 +---------------------------

595968 +---------------------------

.data [4608 bytes]

600575 +---------------------------

600576 +---------------------------

.rdata [78848 bytes]

679423 +---------------------------

679424 +---------------------------

.idata [1387 bytes]

680810 +---------------------------

680811 +---------------------------

More import [281 bytes]

681091 +---------------------------

681092 +---------------------------

(Zero-filled) [380 bytes]

681471 +---------------------------

681472 +---------------------------

Symbol table [169074 bytes]

850545 +---------------------------

850546 +---------------------------

String table [293416 bytes]

1143961 +---------------------------

Mississippi State University Center for Cyber Innovation
30

Analysis of Simulation PE Files
• findSSV tool by Dr. Jay Tevis We look for:

1) sections in a file
whose contents can
be both written to and
also executed,
2) large unused zero-
filled regions in a file,
and
3) the use of functions
susceptible to buffer
overflow attacks.

Mississippi State University Center for Cyber Innovation
31

Results of the Case Study

1. The simulation is vulnerable to buffer overflow attacks
2. Large number of string literals in compiled executables,

particularly in Solaris version
3. Neither Windows nor Solaris version of the simulation had

the debugging information stripped from the executables
at compile time.

4. There is potentially sensitive information still in the source
code distributed to all US customers of the simulation.
• These instances were usually found in comments still placed

in the code, usually detailing upgrades that were made to the
software.

• There were a few instances of values being hard-coded into
the source code.

• Most of the values used by the simulation appear to be input
from another location, such as a file or the keyboard, or
declared in header files that were not included with the
simulation.

Mississippi State University Center for Cyber Innovation
32

Security at a Higher Level of Abstraction

Microsoft .NET Security Configuration Tool

[image: image1.png]Fle Acton View Hep

- BEB @

I3 Console Root.
5 4 NET Framenork 2.0 Configuration
= {2y Computer
€ Acsenbly Cache
(4@ Configured Assembles
] Remoting Services
= (5l runtme Seaunty poicy
e t—
o Wachine
o user
G Coce Groups
= (gl permissonsets
Locslnranet
Intemet
Sepverficason
Executon
Nothing
Everything
Fullrust
G0 Polcy Assembies
{5 Trusted Applcations
B aspicstions

B1FieDiog

161t Sorage e

9] sty
9] er nefece

[#]printing

View this permision's properties:

‘Securty Permisson:

Permission

[Granted

Enable Code Execuion
[Allow Calls to Unmanaged Code:

(Sssert any permission that has been granted
Skip Verification

Enable thread control

| Allow Policy Control

| Allow Domin Policy Control

[Allow Principal Control

Create and Control Applcation Domains
Serialzation Formatter

|Allow Evidence Control

Extend Infrastructure.

Enable Remoting Configuration

Yes
No
No
No
No
No
No
No
No
No
No
No
No

Mississippi State University Center for Cyber Innovation
33

Concept of a .NET Assembly Rewriter

• The proposed code rewriter will use a
combination of adding declarative security and
rewriting byte code to ensure that an untrusted
module can be safely redistributed.

• The code rewriter will use Microsoft’s ILDASM
disassembler to get a disassembled text file.

• It then will parse this file and create a second
assembly text file containing the modifications.

• Finally the modified assembly is reassembled
using Microsoft’s ILASM assembler.

Mississippi State University Center for Cyber Innovation
34

Rewriting Assemblies

[image: image1.png]8] Code Rewriter for Security.

Deny: FlelOPemission/trbute: Wirte="c:\program fes™

[FlOPomasonsibte U] [Ws="c-progamfes”

(o] (oo]

[image: image1.png]8] Code Rewriter for Security.

‘Execute il not run unless checked)
[Display user nterface:

[Access isolated storage- Quota:

[Fles via Windows dialogs

[Network sockets

[Serslzation of binary data

[image: image1.png]8] Code Rewriter for Security.

Fie
Basic | Advanced | Assemblies

‘Assemblies alowed to be referenced

mgrt
mgrs

macorio

System
Sllmﬁﬂmwm d
i e Festors
System Web RequiarErpressons ¥ | defaus

Detals: Version=1.0.5000.0, Cutre=nesral, PublicKey Token=b035711150ad3a, Custom=nul

Mississippi State University Center for Cyber Innovation
35

Software Security at Higher Level of
Abstraction

• The use of type-safe managed code or virtual machines allows
for useful security guarantees
– (in particular, the absence of buffer overflow errors).
– Although .NET provides a significant security framework, its focus

is on individual administrators protecting their machines or
networks from untrusted code, not on allowing developers to
include untrusted modules in new software projects.

– Furthermore, the framework is overly complex, which means it is
unlikely to be used correctly.

• We propose a tool which allows developers to rewrite .NET
assemblies so that they can be redistributed with security
guarantees that are enforced by the .NET framework.
– This tool will have a very simple interface and is sufficiently flexible

to create any possible security policy.
– The code rewriter also provides the ability to choose simple

security policies that should cover most cases.

Mississippi State University Center for Cyber Innovation
36

Simulation Software Security Summary

• Best defense on buffer overflows is implicit bounds
checking.

• Machine language executables cannot be considered
inherently secure.
– Source code not required to compromise compiled software.

• Executable software once released cannot be controlled.
• Training, tactics and procedures embedded in a compiled

software simulation are vulnerable to compromise if
released.

• Reverse engineering techniques have limitations
– Reverse engineering by resource unconstrained professional

intelligence efforts can over time make significant discoveries.
• The future of simulation software security is working at a

higher level of abstraction.

Mississippi State University Center for Cyber Innovation
37

Questions?

What do you want to talk about?

	Slide Number 1
	Simulation Security: Securing the Future of Simulation
	Outline
	Unreasonable Security Fears
	Simulation Customers in the USA
	The Missile Defense Agency Asked:
	Typical DoD Security Model�Weapons Training
	Attacking Simulations as Software
	High Assurance Vulnerability Assessment
	Challenges in checking source code
	Slide Number 11
	Review of published documentation
	Open source review of weapons and systems data
	Security by Obscurity
	Ken Thompson
	C, an average programming language
	Notes from the Cult of the Dead Cow
	Finding our own buffer overflow
	Reverse Engineering
	Copy Protection
	Code Obfuscation
	Obfuscation Techniques
	Desk check of selected source code
	Disassembly of executables
	Analyzing the disassembled code
	Stripping the executables
	Decompilation/Analysis of Binaries
	Analysis of the Binaries
	PE File Format
	Analysis of Simulation PE Files
	Results of the Case Study
	Security at a Higher Level of Abstraction
	Concept of a .NET Assembly Rewriter
	Rewriting Assemblies
	Software Security at Higher Level of Abstraction
	Simulation Software Security Summary
	Questions?

