Misssippt

UNIVERSITY

J. A. “Drew” Hamilton, Jr., Ph.D.
Director, Distributed Analytics & Security Institute
Director, Center for Cyber Innovation
Professor, Computer Science & Engineering
Fellow, Society for Modeling and Simulation

CCl Voice: (662) 325-2294
Post Office Box 9627 Fax: (662) 325-7692
Mississippi State, MS 39762 hamilton@cci.msstate.edu

1@3[Mississippi State University Center for Cyber Innovation
M2

Simulation Security: Securing the

Future of Simulation

What if a simulation Is
too good?

T
Mississippi State University Center for Cyber Innovation ij’,"‘ 4

« What is simulation security and why should you
care?

e A case study in simulation software vulnerability
analysis.

e Simulation security state of the art.
« Conclusions and a proposed way ahead.

Mississippi State University Center for Cyber Innovation

HACKERS CAN TURN

HOME COMPUTER

By RANDY JEFFRIES / 7 C
WASHINGTON — Right now,

computer hackers have the ability to
turn your home computer into a bomb
and blow you to Kingdom Come — and
they can do it anonymously from

thousands of miles away!
Experts say the recent “break-ins”
that paralyzed the Am:

Buy.com and eBAY wi
compared to what will happen in the
near future.

INTO A

oncom. o o g & b’OW YOW'

_ l
Computer expert Arnold Yabenson, pres-
ident of the Washington-based consumer

Crime Prevention
s that as far as com-

group National Cyl
Fullhdatl('m lI\(‘PFI.

T concerned, we've only seen
i berg.
“The criminals who knocked out those @

three major online busin are ;
the least of our worries,
told Weekly World News.

“There are brilliant but unserupu-
lous hackers out there who have
developed technologies that the
average person can't even dream of.

-ibl‘ﬂ-"“mlho“ computers work have trouble
g ﬂleu' I'l'I.LI:Id‘a dmum:l the terri-

in to send someone an e-mail
an innocent-looking attachment

Even people who are familiar \uth connected to it. When the receiver

Sickos can wreak death

, and destruction from

thousands of mlles away!

Amold Yabenson,

i downloads the

attachment, the
electrical current
and molecular
structure of the
central pro-
cessing unit is
altered, causing
it to blast apart
like a large

S, hand grenade.

surprise anyone. It’s just the n

in an ever-escalating progre

horrors conceived and instituted by
ok

Yabenson points out that these dan-
gerous :

@ Vandalized FBI and U. S. Army
websites.

® Broken intoe Chinese military
networks.

@ Come within two digits of erack-
ing an §7-digit Russian security code
that would have sent deadly missiles
hurtling toward five of America’s ma-
jor cities
“As d.mgerous as this technology is

| “As shocking as { 5, it shouldn’t
’rlght now, it’s going to get much

KABOOM! It might not look like it, but an innocent home
computer like this one can be turned into a deadly weapon.

scarier,” Yabenson said.
“Soon it will be sold to terrorists

| cults and fanatical religious-fringe

groups.

“Instead of blowing up a single
plane, these groups will be able to
paich into the central computer of a
large airlin d blow up hundreds
of planes at B,

“And worse, this e-mail bomb
program will eventually find its way
into the hands of anyone who wants
it.

“That means anyone who has a
qudrrel with you ‘holds a grudge
against you or just plain doesn’t like
your looks, ean kil vou and never be
found out.”

I e r o N 7y F 9

AR PRl

SR

C
S
q
®
Q)
7
O
S
o
O
®
L
®
0
c
=y
(o o
<
m
®
Q)
q
"

Simulation Customers in the USA

orss
] ETHAN
ALLEN
S5EN- 608

S

 Department of Defense
 Walt Disney Corp.

™ Wy froen
[LU= e oy i

What is the impact
of sharing missile
defense simulation
software with our
Allies?

What exactly are we
sharing?

What sensitive
information can be
gleaned from the
Internals of the
software?

SiSg

'b\‘.’

\&

The Missile Defense Agency Asked:

o2l §
\q: rfé

Typical DoD Security Model

Weapons Training

notional weapons data unclassified results

Weapons Effects >

actual weapons data Calculations classified results

« Assumptions

— Calculating weapons effects are
already well known, only the actual
weapons capabilities are classified

— The calculations themselves do
not reveal sensitive information
about training, tactics and
procedures used in weapons
targeting

Attacking Simulations as Software

« OBJECTIVES
— Look for the underlying models the simulation is constructed from

— Compromise training, tactics and procedures used in missile

defense
— Compromise weapons and systems performance data

Simulation

Simulation

Simulation

Software
Program

Inputs (files or
interactive)

Outputs

Experimentation w/“open 1. Exploitation of operating 1. Sensitivity Analysis of

source” system data system vulnerabilities output based on
Privilege escalation 2. Analysis of installed files input changes

via buffer overflows 3. Decompilation and 2. One “off” test cases to
Analysis of bounds disassembly of targeted examine relationships
checking if implemented executables

vorl §
‘Q: ?’A
= ™M

]@ﬂa[Mississippi State University Center for Cyber Innovation -:%’: y
AR XD o

High Assurance Vulnerability Assessment

 Line-by-Line verification of source code

 Professional and/or contract decompilation of
executables

« Complete review of published documentation

 Analysis of simulation runs to evaluate training,
tactics and procedures

« Open source review of weapons and systems
data

 Analysis of degree of parameterization

A Software Engineering Approach to VA

1@3[Mississippi State University Center for Cyber Innovation

Challenges in checking source code

VOLUME I—PARTS 1 TO 51

FEDERAL
ACQUISITION
REGULATION

ISSUED MARCH 2005 BY THE:
GENERAL SERVICES ADMINISTRATION A REMINDER

DEPARTMENT OF DEFENSE
from

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
(This edition includes the consolidation of all Federal Acquisition Circulars through 2001-27) Yn“n FHIE" Ds l' Hlnmmunl

1@33[Mississippi State University Center for Cyber Innovation

2R

Version 5.4 15 dune 2000

Integrated Defense Acquisition, Technology, and Logistics Life Cycle Management System

Following tha Matetis! Dovalopmant Dscision, the Mifestona Decision Authorify may authorize ontry inio the acquisition process af any point, consistant with phase-spacific snirance critana and statutory requiremonts

JEAT e WM e Bt
PR N e

Support Phase

AU B gt A I R A
NG U

“~— Materiel Solution Analysis Phase — Te va Pl 1t Phase ing & uring D ! Phase F ion & Depleyment Phase Cperations &
Coomptan Ayt of A, aacar ot s s 1 ey, s 3 Sy, SUYn 1 7SR 1S4V WU A i S A e A, YAl AR U eI S B sy i auias movare
T e, L , P e SIS oot G oA (ol At I TG LT oW gfao mvsion o) (waai D aeoes i e s e S e 1 e Letes S, B [
Err oy o A b nogn 1 i : § » erreig it st
I B, b TSt o 20 Y A MISS, o i o T vt o e mrsnovs cogrng e 1 TAS ntegrated System “System Capablllly & Manutactuing ms - Full-Rate
Campria Sanoiog, e A s B Deslan st Process Demonstratlon [Low-Rate Initial Production Yy

Capabilities

S Tl et iRl

Integration & /
Development |
System

(naed-driven)

Oversight
&

Review

Caontracting

Major
Products

Vil &

B

epiual

ek

B

Eyatum Thraar Asgusamai]

‘e ot s

Evalltlanary Acqulsition Strategy

Beauemen Sty

o ratass

o R P T R
i ol sy

g

Engins
M

cruring
Development Cantract

Logistics!
Sustaimmernt

ouTRurs WRUTS

Defense
Acquisition e
System pr by S

{event-driven) S

Bieunlop InHia Prodwct Supro
Iniliely Pryriuct Sopyn:

eyl
oo 3ond Bfon 1o

Production

L TrpTe eI

i

Technical

&ysrems Enginsring
Test and Evatustion
Sapmorisbility

i

0 fhaen
Pl Fubse
Financial
Management

T AT Frte
[Paroreer o

Fra
[reeh Bty

e

[rwmir vt i orar |

:' Disposal

Systems

Tatal L
cle Systems
g‘ﬁnr

e dcian S » Soppert Eorbmida

F A Fyrpi
ot

EEE=

nrans Chmngn
e

i
Frviuet Supper;

oA ——

Saskare

Parametric

ﬂ”'«“\?}.‘* Mothods ‘ ey

Enginzering

Bewal casts

o componant i P

ROTAE Systcms Develapment & Demersiration

ProsUrs It

[wmoronmgm] Tipssof ROTAE Advancod Technsiogy Bevaiopmant ROTAE — Advans
MO FoM Input F i,
e Funds

ROTAE - WarsspeanenL & Supporl

Cperations and
Maintenance

e e S %,,,,,,A,,,,,,,,,,+,,,,,,,,,,,,,,,,,,,

Planning, Loy

e

- Departinents snd

Programming, Defenzo Agencies
Budgeting

& Execution Office of the [T

Sscratary of Defanse _
Process and Joint Skff [¥ations! Defense Stretegy] [Fizcal Buidans= |

Detonsn Flanning &
o 14 Bl

[romsummromustn|——{ rowaui s |
T

Do o W T T G

_— | IMSATALE PROGAINEY dgat ‘
i }_’

Diclsdune

Aumtist-Naveraber

Nevember Dacember

el Appeals

1

A
Bunger
Cenninitsrs Eammittecs Gammitizes

tannual : B ¢ - Pzt
calendar-driven) Whits amn Semry Saia] [Farattaiones | k b P
House : L =) = Pracics
e et s e
S —— o

AR

Review of published documentation

Conducted a major review of the more than one
thousand pages of documentation.

Concluded that the simulation indeed has a high
degree of parameterization.

While the physics calculations are sometimes
complex, there was nothing to indicate any
restricted or sensitive information.

Documentation appears very consistent with the
performance of the program.

@33[Mississippi State University Center for Cyber Innovation

Open source review of weapons and

systems data

 Classify results into four categories
— Located: values were located in open sources
— Derived: values derived from known values or other
derived values

— Guessed: parameters for which researcher input an
arbitrary but seemingly reasonable value

 Important to note that researcher was a computer scientist,
not a subject matter expert

— Default: default values in GUI used in simulation run

Mississippi State University Center for Cyber Innovation

Security by Obscurity

« Hide the source code and only release the
executable.

 False belief that code compiled into binary
remains secret just because the source is not
available.
— Java byte code is particularly vulnerable

 Netscape POP (post office protocol) 1999
— password with weak cryptography
— stored in windows registry
— experimentation with XOR on password strings

e pattern detected
e encryption algorithm reverse engineered

1@3[Mississippi State University Center for Cyber Innovation

M % 14

Ken Thompson

e Lead developer of UNIX in early 1970’ s

* Installed back door that automatically added his
account and password to every UNIX system

e Back door was not in the source code it was
hidden in the binary code that was needed to
build UNIX

« Back door automatically propagated itself into
future UNIX distributions

 Revealed 14 years later in his ACM Turing
Awards acceptance speech

e http://www.acm.org/classics/sep95

I@E[Mississippi State University Center for Cyber Innovation

15

C, an average programming language

« Cisinherently unsafe — programs
may overflow buffers at will.

 No runtime checks that prevent
writing past the end of a buffer.

SECOMD EDITION

 Reading or writing past the end of a FED \
buffer can cause a number of Eara
diverse behaviors PROGRAMMING
— Programs may act in strange ways LANGUAGE
— Programs may fail completely “DENNIS M RITCHEE

PRI AL TR L

— Programs may proceed without any
noticeable difference in execution.

1@3[Mississippi State University Center for Cyber Innovation

M e 16

Notes from the Cult of the Dead Cow

To get this to happen, | fed a
string of Ox80 bytes into a

popuar conference package gy

called 'Microsoft Netmeeting’

buffer overflow tutorial

: Thiz progran haz performed an illegal operation

thr'oughdtgl_e Igd(rj]ress field of Q Ihis progamHesipett
a Spee lal” shortcut. [f the problem persizts, contact the program Debug |
EIP happens to be vendor. Detalers> |
0x80808080.

PINDLLZEZ caused an inwvalid page fault in -
_ GueSS Whatr) module =“unknomm= at 00de: 20202020 _
— That's good! Begisters:

Ei=281c0bkbs2 C5=014f EIP=20202020 EFLGS=00010Z45
— | found a stack overflow! EEX=0063ff68 28=0157 ESP=0054004% EBEP=005400f%

. ECH=00540120 D5=0157 E&TI=005401cd F5=1337 s

NOW a” I haveto do IS Craft EDb<=bhff7e542 E5Z=0157 EDI=005401a8 GE=0000
my exploit string to have Bies e Leo *
some fun code inside, and

tweak four of those 0x80
bytes to point to my exploit
string. Warning: Foul language on this site

jﬁgﬁ[Mississippi State University Center for Cyber Innovation

. .‘N‘

Finding our own buffer overflow

., Ml Microsoft Yisual C++ [break] - [Disassembly]

J@ File Edit Wew Insert Project Debug Tools Window Help =18l =]
e zme ¢ me|o- o B EE| W =]
| | | S |e

005D7FED e GetToken+54h (005d47fd4) ﬂ

QO0ED7FAF mow ebp,dvord ptr [esp+l8h] =l

005D7F93 o ecxE, dyord ptr [edi+50h]

O0ED7F96 test ECHE, SCH

O0ED7F98 je GetToken+4Dh (005d7fcd)

005D7F94 O =1, ehp

QOSD7FAC o al byte ptr [ecx]
o 00SD7F9E T bl.byte ptr [esi]

00SD?FAD Mo dl.al

O0EDYFAZ cnp al.bl

005D7FA4 ine GetToken+ddh (00547fcd)

O0ED7FAR test dl.dl

OO0SD7FASR e GetToken+40h (005d47fc0)

00SD7FAA O al.byte ptr [ecE+l]

QOSD7FAD o bl byte ptr [e=i+l]

00SD7FED Mo dl.al

J0SD7FE2 cnp al.bl

QOED7FE4 ine GetTolken+ddh (005d7f{cd)

QO05D7FER add ecE, 2

O0ED7FEY add esi, 2

00SDYFBC test dl.dl

005D7FEE ine GetTolken+1Ch (00547f9z)

Q0ED7FCO Hor BCE, BCE

00SD7FC2 inp GetToken+4%h (005d47f=9)

005D7FC4 =bb ECH, BCKE

O0EDYECE sbb ecx, JFFh

QOS5D7FCY test BCE, BCX

O0ED7FCE je GetToken+54h (005d7£d4)

005D7ECD TRV edi, dvord ptr [edi+5Ch]

QO0ED7FDO test edi, edi

Q05D7FD2 jne GetToken+13h (005d47£93)

J05D7FD4 o =ax, edl

005D7FD& pop edi

005D7FD? pop e=l

005D7FDA nop ehp

QOSDFFLY pop ebx g
< | _>_I_I
x x
j ante:dt:ll.":etTnken[] LI j ?lame E!\.f'alue

Hame |Vahe ;

’ A ¥ Ao [Locals &, this £ [¥ I weatoht {watchz T wiatch3 & Wiatchd /

Feady

iﬂﬁtart”J m ﬁ I‘_&f] |J EPE Explorer | @Extendedstay | @hotels.cnm—E...l @hotels.com—c...l i ”w ’ - Micr... <ﬂ- 5:03 PM

Reverse Engineering

e Machine code analysis
e Core Dumps
 Reverse Engineering Tools

 Debuggers usually have disassemblers
— takes machine code and translates into assembly language
— C code versus assembly
* |loops versus counters and jumps
« Decompilers are not as mature as dissassemblers

— attempt to convert machine language into high-level language
constructs

— JVM programs much easier to reconstruct than “hand coded”
assembly language

— decompilation performance can be enhanced if the program is
compiled with debugging options on

Assume that binary code can be reconstructed

1@3[Mississippi State University Center for Cyber Innovation

M e 19

Copy Protection

 Tradeoff — protection of intellectual property versus
hassling legitimate users

— OPNET Example

 License Keys — A psychological deterrent

— Encryption Keys
« use 36 character set less “1” “|” “0” “O” = 32 characters
« Use CBC and say “Blowfish” and produce valid keys

 Each key is a counter concatenated with a fixed binary string,
encrypted and converted base 32

— Checking the license key for validity

 decode the base 32 string, decrypt the binary with the stored
encryption key and to see that the last 12 bytes are equal to our
stored binary string

 Force software to run off of distribution CDs
e Theoretically, no mediais “copy proof.”

” “

15

Y,
>

1@3[Mississippi State University Center for Cyber Innovation
M2

\

20

Code Obfuscation

* Anti-tampering
— Checksums

— Check for debuggers
 Running debuggers reset the instruction cache on every operation
* Check for this condition and jump your code to crash the program

 Obfuscation
— Rename all variables in code to arbitrary names
— Automated code obfuscation still an open research area
— JVM retains much more data than other HLLs
— Makes programs harder to maintain

15

Y,
>

Mississippi State University Center for Cyber Innovation

\

21

Obfuscation Techniques

Add code that never executes or that does nothing

— Make calculations more complex

Move code around

— Spread related functions as far apart as possible

— Fake “encapsulation”

— Combine multiple unrelated functions into a single function
Encode your code oddly

— Picking strings directly out of memory is easy

— Convert strings to odd character sets, only make strings
printable when necessary

Encrypt program parts

— Generally “low grade” because of performance considerations
— Data versus operation encryption

— Hex editor for manual encryption

— Encryption of padding

]@ﬂa[Mississippi State University Center for Cyber Innovation

B- 22

Desk check of selected source code

 Source code for some simulation modules shipped to US
users.

» Desk Check done in two parts:

— First finding security vulnerabilities that might allow a third
party to take control of the simulation executable.

* No unbounded buffers located
« Tab key buffer overflow found earlier

— Second search sensitive information contained in the
simulation source code.

« Conditional and assignment statements searched
 Keyword search

e Results submitted to MDA

— Working in a classified environment, unclear how sensitive our
findings were.

15

Y,
>

1@333(Mississippi State University Center for Cyber Innovation

- -'M

\

23

Disassembly of executables

Executable Executable size Assembly size
Simulation 25792k 131624k
Kernel Interface 39440k 141016k
Simulation GUI 37504k 167528k

440,168k of assembly code was generated from three
executable files totaling 102,736k in size.

 This volume of generated assembly code represents
approximately 9.3 million lines of assembly code.

« Disassembled code was successfully reassembled and
executed.

400 MHz Intel Celeron processor with 128 MB of RAM.

I@E[Mississippi State University Center for Cyber Innovation

M e 24

Analyzing the disassembled code

The simulation assembly code totaled about 500MB in size, and
was therefore difficult to work with.

With sufficient resources, the large amount of assembly code
could be understood and mapped out.

— Also, given the number of viable decompilers that are targeted at
specific compilation platforms, along with available theory on how
to attempt such focused efforts [Housel 1974, Breuer 1994, Weide
1995], it would be possible for an organization to implement their
own custom decompiler specifically tasked with compromising a
single executable.

— Things that might thwart such an effort would be the use of
optimizing (or other obfuscating) compilers.

— A failed disassembly attempt using PE Explorer did reveal a
compiler version number “6.0.” This led to successfully guessing
the compiler used MS Visual C++ 6.0.

1@3[Mississippi State University Center for Cyber Innovation

M e 25

Stripping the executables

At the end of the analysis of the compiled executables, it
was discovered that neither the Windows nor the Solaris
versions of the simulation had been stripped of debugging
Information.

 This is particularly disturbing given the information that
could potentially be obtained simply by running the
application through a debugger.

« For example, by running the GUI program through
Microsoft’ s Visual C++ 6.0 Debugger, the names of several
different functions could be found.

— In addition to the function names, the number and type of
arguments required by the function were also found.

— This could greatly assist anyone seeking to compromise the
simulation code, even if they did not have access to anything
other than the compiled executables.

]@m[Mississippi State University Center for Cyber Innovation

- -'M

Decompilation/Analysis of Binaries

 Approximately 27 megabytes of string literals
were extracted from the three executables.

e Just under 1.6 million individually discernable
strings greater than or equal to four characters in
length were generated.

— Note that a large number of these strings are “trash”
strings having no English-language meaning, or are
object-file specific strings which have only partial
English-language meaning, and which are used in
computing the offsets of individual data members in
certain aggregate data types.

Mississippi State University Center for Cyber Innovation

Analysis of the Binaries

o Of the slightly less than 1.6 million strings literals found above,
less than one-third, or about 450,000, of these were found in the
initialized data space of the executable.

— This included what appeared to be function names and
variable/member names.

« Between 32,000 and 36,000 of these string literals appeared to be
format strings of the type used in standard I/O print statements.

— Error statements such as “Error, cannot open file %s for reading.”
or “MAJOR ERROR!!! [System/Ruleset/Sensor/Com Device/Jammer]
%s does not exist for opfac %s,” to other informational statements
such as, “The following Platforms have the '%s' system type:” or
“The following Systems use the '%s' system as a weapon ...”

— No weapon-specific string literals were found in this manner, except
a few instances of “PATRIOT” located in an error messages such
as, “Missile type %s not found in PATRIOT missile preference
table.”

— No references were found which contained the strings “SCUD,”
“THAAD,” or “Aegis.”

1@3[Mississippi State University Center for Cyber Innovation
M2

ADDRESS DESCRIPTION .
PE File Format

.text [594944 bytes]
595967
595968
120
121 600575
600576
127
128 679423
679424
131
132 680810
680811
151 More import [281 bytes]
152 681091
681092
375 (Zero-filled) [380 bytes]
376 681471
Section Table [200 bytes] 681472
Symbol table [169074 bytes]
850545
850546
String table [293416 bytes]
1143961

Analysis of Simulation PE Files

We look for:
1) sections in afile

whose contents can
be both written to and
also executed,

2) large unused zero-

filled regions in afile,

and

3) the use of functions
susceptible to buffer

overflow attacks.

o findSSV tool by Dr. Jay Tevis
File File Size Total Large Unused Import Symbol | Debug
Nbr (bytes) Vul. Unknown Zero- Table and Table
Region filled Anomaly String
(bytes) Bytes Tables
1 6,622,124 12 4,381,612 | 100,726 | 80/1620 No yes
2 4,961,816 12 3,356,184 | 56,560 | 80/1620 No yes
3 34,304 0 0 0 40/927 No no
4 4,841,964 13 3,269,100 | 76,212 | 80/1694 No yes
5 34,816 0 0 0 40/927 No no
6 23,255,612 14 16,046,652 | 314,600 | 180/4663 No yes
7 23,043,168 12 15,219,658 | 364,746 | 100/2495 Yes yes
8 26,864,140 14 19,544,588 | 413,280 | 160/8341 No yes
9 27,627,392 14 19,791,744 | 443,924 | 160/5339 No yes
10 6,041,004 12 4,124,076 | 72,142 | 80/1556 No yes
11 942,138 0 0 0| 60/2533 No yes
12 31,232 0 0 0 40/898 No no
13 4,207,940 13 2,856,260 | 68,720 | 80/1570 No yes
14 7,696,928 12 5,083,680 | 98,792 | 80/1623 No yes
15 33,280 0 0 0 40/908 No no
16 16,384 1 0 0 80/432 No no
17 4,385,052 13 2951452 | 64918 | 80/1594 No yes
18 374,436 10 280.228 5022 | 40/1026 No yes

]@%[Mississippi State University Center for Cyber Innovation

Results of the Case Study

1. The simulation is vulnerable to buffer overflow attacks

2. Large number of string literals in compiled executables,
particularly in Solaris version

3. Neither Windows nor Solaris version of the simulation had
the debugging information stripped from the executables
at compile time.

4. There is potentially sensitive information still in the source
code distributed to all US customers of the simulation.

« Theseinstances were usually found in comments still placed
in the code, usually detailing upgrades that were made to the
software.

« There were afew instances of values being hard-coded into
the source code.

« Most of the values used by the simulation appear to be input
from another location, such as a file or the keyboard, or
declared in header files that were not included with the
simulation.

Mississippi State University Center for Cyber Innovation

Security at a Higher Level of Abstraction

fe« .NET Framework 2.0 Configuration

File Action \View Help
RN

(23 Console Root
[=] % MET Framework 2.0 Configuration
E=l Q My Computer
Assembly Cache
Configured Assemblies
Remoting Services
[=] L@l Runtime Security Policy
+ J:fg Enterprise
+-[B Machine
- fF User
+-Lgl Code Groups
-1 (5 Permission Sets
#] Locallntranet
i] Internet

% SkipVerification
i)

Execution
sz_] Mothing
] Everything
FullTrust
@ Policy Assemblies
‘E Trusted Applications

Applications

Permission
%] File Dialog
_ﬂ Isolated Storage File
] security
_ﬂ User Interface
@ICUSTDH‘I Permissign - B Ao nrmes WehBrpwesrPermisainn
9] Printing Permission Viewer (Read-Only) E
Securty Pemission
Permission Granted
Enable Code Execution Yes
Allow Calls to Unmanaged Code No
Assert any permission that has been granted No
Skap Venficabion Mo
Enable thread control No
Allow Policy Control Mo
Allow Domain Policy Control Mo
Allow Prnincipal Control Mo
Create and Control Application Domains Mo
Senalizabon Formatier No
Allow Bvidence Conirol No
Extend Infrastructure No
Enable Remoting Configuration Mo
£

View this permission's properties

Microsoft .NET Security Configuration Tool

Close

[image: image1.png]Fle Acton View Hep

- BEB @

I3 Console Root.
5 4 NET Framenork 2.0 Configuration
= {2y Computer
€ Acsenbly Cache
(4@ Configured Assembles
] Remoting Services
= (5l runtme Seaunty poicy
e t—
o Wachine
o user
G Coce Groups
= (gl permissonsets
Locslnranet
Intemet
Sepverficason
Executon
Nothing
Everything
Fullrust
G0 Polcy Assembies
{5 Trusted Applcations
B aspicstions

B1FieDiog

161t Sorage e

9] sty
9] er nefece

[#]printing

View this permision's properties:

‘Securty Permisson:

Permission

[Granted

Enable Code Execuion
[Allow Calls to Unmanaged Code:

(Sssert any permission that has been granted
Skip Verification

Enable thread control

| Allow Policy Control

| Allow Domin Policy Control

[Allow Principal Control

Create and Control Applcation Domains
Serialzation Formatter

|Allow Evidence Control

Extend Infrastructure.

Enable Remoting Configuration

Yes
No
No
No
No
No
No
No
No
No
No
No
No

Concept of a .NET Assembly Rewriter

e The proposed code rewriter will use a
combination of adding declarative security and
rewriting byte code to ensure that an untrusted
module can be safely redistributed.

« The code rewriter will use Microsoft’ s ILDASM
disassembler to get a disassembled text file.

e It then will parse this file and create a second
assembly text file containing the modifications.

 Finally the modified assembly is reassembled
using Microsoft’s ILASM assembler.

I@E[Mississippi State University Center for Cyber Innovation

33

Code Rewriter for Security
File

E® Code Rewriter for Security
File

Basic |Tﬂ;dvanced | Assemblies |

| Basic | .Pud'l.ranc:ed| Assemblies |

Execute {will not run unless chechked)

[] Display user inteface

[] Access isclated storage— Quota: | | ME

[] Files via Windows dialogs
[] Metwork sockets
[Serialization of binary data

=

Assemblies allowed to be referenced

Aszemblies NOT allowed to be referenced

mgnat
mgnatcs
macorib
System

System . Drawing

System . Drawing.Design
System . Management
System . Messaging

System Web

System Web ReqularBExpressions

Details; Version=1.0.5000.0, Culture=neutral

File: ¢ emp'lest dl

:8 Code Rewriter for Security

File

| >

b

application
librany1

Restore
defaults

, PublicKeyToken=h03f511d50a3a, Custam=null

- |

=&

Allow: FilelOPemissionAttribute; All=
Dery: FilelOPemissionAttibute; Write="c\program files™”

"ctempiiest bd"

File|OPemissionAtrbute

W

Wnte="c\program files"

TE | Mlow | | Dey |

34

I |

[image: image1.png]8] Code Rewriter for Security.

Deny: FlelOPemission/trbute: Wirte="c:\program fes™

[FlOPomasonsibte U] [Ws="c-progamfes”

(o] (oo]

[image: image1.png]8] Code Rewriter for Security.

‘Execute il not run unless checked)
[Display user nterface:

[Access isolated storage- Quota:

[Fles via Windows dialogs

[Network sockets

[Serslzation of binary data

[image: image1.png]8] Code Rewriter for Security.

Fie
Basic | Advanced | Assemblies

‘Assemblies alowed to be referenced

mgrt
mgrs

macorio

System
Sllmﬁﬂmwm d
i e Festors
System Web RequiarErpressons ¥ | defaus

Detals: Version=1.0.5000.0, Cutre=nesral, PublicKey Token=b035711150ad3a, Custom=nul

Software Security at Higher Level of

Abstraction

« The use of type-safe managed code or virtual machines allows
for useful security guarantees

— (in particular, the absence of buffer overflow errors).

— Although .NET provides a significant security framework, its focus
Is on individual administrators protecting their machines or
networks from untrusted code, not on allowing developers to
include untrusted modules in new software projects.

— Furthermore, the framework is overly complex, which means it is
unlikely to be used correctly.
« We propose atool which allows developers to rewrite .NET
assemblies so that they can be redistributed with security
guarantees that are enforced by the .NET framework.

— This tool will have a very simple interface and is sufficiently flexible
to create any possible security policy.

— The code rewriter also provides the ability to choose simple
security policies that should cover most cases.

]@ﬂa[Mississippi State University Center for Cyber Innovation

- -'M

Simulation Software Security Summary

 Best defense on buffer overflows is implicit bounds
checking.

« Machine language executables cannot be considered
inherently secure.
— Source code not required to compromise compiled software.

e Executable software once released cannot be controlled.

 Training, tactics and procedures embedded in a compiled
software simulation are vulnerable to compromise if
released.

 Reverse engineering techniques have limitations
— Reverse engineering by resource unconstrained professional
intelligence efforts can over time make significant discoveries.
 The future of simulation software security is working at a
higher level of abstraction.

1@3[Mississippi State University Center for Cyber Innovation

M e 36

Questions?

‘Buflies

 Mississippi State University
wwrw.mstateathietics.com

15

p 37

	Slide Number 1
	Simulation Security: Securing the Future of Simulation
	Outline
	Unreasonable Security Fears
	Simulation Customers in the USA
	The Missile Defense Agency Asked:
	Typical DoD Security Model�Weapons Training
	Attacking Simulations as Software
	High Assurance Vulnerability Assessment
	Challenges in checking source code
	Slide Number 11
	Review of published documentation
	Open source review of weapons and systems data
	Security by Obscurity
	Ken Thompson
	C, an average programming language
	Notes from the Cult of the Dead Cow
	Finding our own buffer overflow
	Reverse Engineering
	Copy Protection
	Code Obfuscation
	Obfuscation Techniques
	Desk check of selected source code
	Disassembly of executables
	Analyzing the disassembled code
	Stripping the executables
	Decompilation/Analysis of Binaries
	Analysis of the Binaries
	PE File Format
	Analysis of Simulation PE Files
	Results of the Case Study
	Security at a Higher Level of Abstraction
	Concept of a .NET Assembly Rewriter
	Rewriting Assemblies
	Software Security at Higher Level of Abstraction
	Simulation Software Security Summary
	Questions?

