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The lack of a standard image intensity scale in MRI causes many
difficulties in image display and analysis. A two-step postpro-
cessing method is proposed for standardizing the intensity
scale in such a way that for the same MR protocol and body
region, similar intensities will have similar tissue meaning. In
the first step, the parameters of the standardizing transforma-
tion are ‘‘learned’’ from a set of images. In the second step, for
each MR study these parameters are used to map their histo-
gram into the standardized histogram. The method was tested
quantitatively on 90 whole-brain studies of multiple sclerosis
patients for several protocols and qualitatively for several other
protocols and body regions. Measurements using mean squared
difference showed that the standardized image intensities have
statistically significantly ( P F 0.01) more consistent range and
meaning than the originals. Fixed gray level windows can be
established for the standardized images and used for display
without the need of per case adjustment. Preliminary results
also indicate that the method facilitates improving the degree of
automation of image segmentation. Magn Reson Med 42:1072–
1081, 1999. r 1999 Wiley-Liss, Inc.
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Magnetic resonance imaging (MRI) has revolutionized
radiological imaging of the internal structures of the hu-
man body. It has the advantage of being noninvasive, with
no known health hazards. A variety of MRI protocols are
available with or without the use of contrast agents. These
protocols allow the setting up of different contrasts among
the different tissues within the same organ system. Unfortu-
nately, one of the major difficulties with MRI techniques
has been that intensities do not have a fixed meaning, not
even within the same protocol, for the same body region,
for images obtained on the same scanner, for the same
patient. This implies that MR images cannot be displayed
at preset windows; one has to often adjust the window
settings per case. The lack of a meaning for intensities also
poses problems in image segmentation (1,2) and quantifica-
tion (3–5), which are the main motivating factors for this
work.

Most visualization and analysis methods have param-
eters. Setting values for the parameters for these methods
becomes more difficult without the same protocol-specific
intensity meaning. What we need is that, for protocols that
are the same or ‘‘close’’ to each other, the resulting images
should be ‘‘close’’ (6). A standardizer can be incorporated
at two stages of the image acquisition/processing flow. It
can be built into the imaging device in order to produce

images with a standard scale at the time of acquisition, or it
can be used as a postprocessing step in a later phase.
Attempts have been made to calibrate MR signal character-
istics at the time of acquisition using phantoms (7,8).
Although it is feasible to do such a calibration of all patient
scans, it is somewhat cumbersome. Moreover, such a
technique is not applicable to image data that have already
been acquired without the required calibration phantoms.
Postprocessing techniques that are applied to the image
data that do not have any special acquisition requirements
are, therefore, more attractive. There is a natural tendency
to think that a simple scaling of the minimum to maximum
intensity range of the given image to a fixed standard range
may solve this problem. This usually does not help in
achieving a similarity of intensities, as demonstrated in
Nyúl and Udupa (9).

A postprocessing technique to automatically adjust the
contrast and brightness of MR images (i.e., ‘‘windowing’’)
for image display has been presented in Wendt (10).
However, although such automatic windowing may achieve
display uniformity, they may not be adequate for quantita-
tive image analysis, since the intensities still may not have
tissue-specific meaning after the windowing transforma-
tion. There does not seem to have been any serious attempt
to address this latter problem in the past.

The method described in this article offers a simple way
of transforming the images nonlinearly so that there is a
significant gain in similarity of the resulting images. It is
based on transforming the intensity histogram of each
given volume image into a ‘‘standard’’ histogram. This is
achieved in two steps—a training step that is executed only
once for a given protocol and body region and a transforma-
tion step that is executed for each given volume image. In
the training step, certain landmarks of a standard histo-
gram (for the body region and protocol under consider-
ation) are estimated from a given set of volume images. In
the transformation step, the actual intensity transformation
from the intensity scale of the input volume image to the
standard scale is computed by mapping the landmarks
determined from the histogram of the given volume image
to those of the standard histogram. The method is easy to
implement and rapid in execution. The actual transforma-
tion itself can be stored as a lookup table in the image
header. The transformed volume images permit predeter-
mined display window settings and also facilitate quantita-
tive image analysis.

THEORY AND ALGORITHMS

The method consists of two steps. In the first (‘‘training’’)
step, a set of volume images of the same body region and
protocol corresponding to a population of patients is given
as input. The parameters (landmarks) of a ‘‘standard’’
histogram are estimated from these image data. This step
needs to be executed only once for a given protocol and
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body region. In the second (‘‘transformation’’) step, any
given volume image acquired as per the protocol and for
the body region utilized in the training step is transformed
so that its histogram parameters match those of the stan-
dard histogram. In this fashion, every patient volume
image histogram is deformed to match it with the standard
histogram. This step is image-dependent and needs to be
executed for each given volume image. This step usually
results in a nonlinear intensity transformation for the given
image (since the two segments are mapped independently).
However, the relationship between tissue intensities is
maintained and intensity comparisons can be made using
the standardized images.

Notation

We denote the set of MRI protocols by P and the set of
body regions by D. We represent a volume image by a pair
V 5 (V, g) where V is a 3-dimensional array of volume
elements (voxels) covering a body region of the particular
patient for whom image data V are acquired, and g is a
function (called intensity function) that assigns an integer
intensity value for each v [ V. (We will often refer to a
volume image simply as an image for short. This is not to be
confused with the 2D slice images. All processing opera-
tions described in this article are carried out in 3D.) We
assume that g(v) $ 0 for all v [ V, and g(v) 5 0 if, and only
if, there are no measured (and computed) data for voxel v.
We denote by VPD the set of all images that can possibly be
generated as per protocol P [ P for body region D [ D.

The histogram of any image V is a pair H 5 (G, h)
where G is the set of all possible intensity values (gray
values) in V (i.e., the range of g) and h is a function whose
domain is G and whose value for each x [ G is the number
of voxels v [ V for which g(v) 5 x. Let m1 5 min 5g(v) 0v [ V
and g(v) . 06 and m2 5 max 5g(v) 0v [ V and g(v) . 06, the
minimum and maximum gray values in V, respectively.

The tails of the histogram often cause problems. Usually
the high intensity tail corresponds to artifacts and outlier
intensities, and causes considerable inter- and intrapatient/
scanner variations. With this in mind, let pc1 and pc2

denote the minimum and maximum percentile values,
respectively, that are used to select a range of intensity of
interest (IOI).

Algorithms

Based on over 20 body region/protocol combinations, we
have observed two types of histograms: unimodal and
bimodal. We have also observed that the histograms of
volume images of the same body region and protocol are
always of the same type. Figure 1 illustrates them schemati-
cally. In case of bimodal histograms, we can usually use the
mode (µ) that corresponds to the main foreground object in
the image as a histogram landmark. With unimodal histo-
grams, the mode usually corresponds to the background, so
we need to select some other landmark. This may be, for
example, the shoulder (v) of the hump of the background
intensities (identified by, for example, the point at which
the histogram slope becomes 21). The locations of the
histogram-specific parameters in these two cases are illus-
trated in Fig. 1. Since most of the protocols we studied
produce bimodal histograms, we will concentrate on this

case in this article. Similar methods can be devised for the
unimodal case.

Our overall approach is as follows. Let the minimum and
the maximum intensities on the standard scale (correspond-
ing to the standard histogram) for the IOI be s1 and s2,
respectively. In the training step, the landmarks p1j, p2j, and
µj obtained from the histogram of each image Vj of a subset
of images of VPD are mapped to the standard scale by
mapping the intensities from [p1j, p2j] to [s1, s2] linearly.
The formula for mapping x [ [p1j, p2j] to x8 is the following:

x8 5 s1 1
x 2 p1j

p2j 2 p1j
(s2 2 s1). [1]

This mapping is utilized to determine the map µ8j of µj on
[s1, s2], and subsequently the rounded mean µs of the µ8js is
computed (see Algorithm 1, below). In the transformation
step, for any given image Vi 5 (Vi, gi) [ VPD, the actual
second mode µi obtained (as described below) from the
histogram of Vi is matched to µs by doing two separate

FIG. 1. Location of the histogram-specific parameters (landmarks).
m1 and m2 are the minimum and maximum intensities in the image, p1

and p2 are minimum and maximum percentile intensities, µ is the
second mode of the histogram (in the bimodal case) and v is the
shoulder of the ‘‘background hump’’ (in the unimodal case).
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linear mappings (see Algorithm 2): the first from [p1i, µi] to
[s1, µs] and the second from [µi, p2i] to [µs, s2]. Figure 2
shows the plot of the mapping function. The lower and the
upper ends of the standard scale are subsequently ex-
tended to s81i and s82i, respectively, by mapping [m1i, p1i] to
[s81i, s1] and [p2i, m2i] to [s2, s82i], as illustrated in Fig. 2. We
call this mapping from the intensities [m1i, m2i] of Vi to [s81i,
s82i ] of the standard scale the standardizer of Vi and de-
note it by tVi

. The expression for tVi
(from Fig. 2) is as

follows:

tVi
(x) 5 a

µs 1 (x 2 µi)
s1 2 µs

p1i 2 µi
b , if m1i # x # µi,

aµs 1 (x 2 µi)
s2 2 µs

p2i 2 µi
b , if µi # x # m2i,

[2]

where a·b denotes the ‘‘ceiling’’ or ‘‘floor’’ operator. (These
operators convert any real number y to the closest integer Y
such that Y $ y or Y # y, respectively.) Note that s81i 5
tV i

(m1i), and s82i 5 tV i
(m2i). The image Vsi 5 (Vi, gsi) result-

ing from the standardizing mapping of Vi is given by, for all
v [ Vi, gsi(v) 5 tVi

(gi(v )). We point out that the ‘‘free ends’’
characterized by the values of s81i and s82i of the standard
scale depend on the given image Vi. In other words, the
range [s81i, s8 2i] may vary from image. However, [s1, s2] is
independent of Vi, and this is the interval within which a
uniformity of intensity meaning is achieved.

In order to find the second mode of the histogram, we
eliminate the first mode (corresponding to the background)
by thresholding. The threshold is chosen to be the overall
mean intensity in the whole image. Several hundred
studies have been successfully processed with this back-

ground removal process in our ongoing projects for differ-
ent protocol and body region combinations.

Algorithm 1. Training

Input: A set of images Vj (j 5 1, 2, . . . , N) that is a subset
of VPD, the histogram parameters pc1, pc2, and s1,
s2.

Output: µs.

begin
1. for j 5 1 to N do
2. compute the histogram Hj of Vj;
3. determine intensity values p1j and p2j corresponding

to pc1 and pc2 and the mode µj on Hj;
4. map [p1j, p2j] of Hj onto [s1, s2];
5. find the new mapped landmark location µ8j;
6. endfor
7. calculate the rounded mean µs of µ8j over j 5 1,

2, . . . , N;
end

Algorithm 2. Transformation

Input: An image Vi [ VPD, pc1, pc2, s1, s2, µs.
Output: The transformed image Vsi and/or a lookup table

(LUT) that stores the standardizer tVi
.

begin
1. compute the histogram Hi 5 (Gi, hi) of Vi;
2. determine intensity values p1i and p2i corresponding to

pc1 and pc2 and the second mode µi on Hi;
3. map sections of the scale of Hi linearly according to

Fig. 2 to the standard scale Gs of the standard histogram
Hs 5 (Gs, hs);

4. map the intensity value of every voxel v [ Vi according
to tVi

to get Vsi and/or output the mapping tVi
in a LUT;

end

Choosing the Standardization Parameters

Although once the training step is completed the corre-
sponding transformation step is fully determined, there are
several possibilities to tailor the standardization to the
specific needs of an application. The scale parameters may
depend on the actual application. For example, s1 should
not be 0 if the values that are below pc1 percentile need to
be distinguished from ‘‘nothing’’ (i.e., value 0). Further, s2

should be large enough not to compress the parts of the
histograms (i.e., not to merge neighboring intensities after
the transformation). When pc1 . 0 and/or pc2 , 100, the
values in [m1i, p1i] and [p2i, m2i] must be mapped to [s81i, s1]
and [s2, s82i], respectively, where s81i and s82i are determined
by applying the mapping in the two linear sections of
Fig. 2.

We will need the following definitions for stating certain
theorems that guarantee the correct behavior of the stan-
dardizer. Let µ8min 5 minVi [ VPD

5µ8i6, and µ8max 5 maxV i [ VPD

5µ8i6. Note that µ8min and µ8max are dependent on s1 and s2. Let
l, L, r, and R be indexes such that

µl 2 p1l 5 min
Vi [ VPD

5(µi 2 p1i)6, [3]
FIG. 2. The intensity mapping function for the transformation phase.
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µL 2 p1L 5 max
V i[ VPD

5(µi 2 p1i)6, [4]

p2r 2 µr 5 min
V i[ VPD

5(p2i 2 µi)6, [5]

p2R 2 µR 5 max
V i[ VPD

5(p2i 2 µi)6. [6]

We will assume throughout that pc1 and pc2 are such that,
for any Vi [ VPD, p1i , µi , p2i.

We state below three theorems which are crucial to
guarantee the correct behavior of the standardizer tVi

for
any given image Vi. Their complete proofs are given in
Nyúl and Udupa (9). Theorem 1 states the conditions
under which it is guaranteed that no two distinct intensi-
ties in Vi are merged into a single intensity in the standard-
ized image Vsi. Thus, if standardizing is done respecting
these conditions, then there is no loss of information and
the original image can be obtained by inverting the standard-
izer tV i.

Theorem 1. For any protocol P [ P, any body region D [ D,
any image Vi [ VPD, and for any pc1 and pc2, such that p1i ,

µi , p2i, the standardizer tVi
of Vi is a one-to-one mapping if

µ8min 2 s1 $ µL 2 p1L, and s2 2 µ8max $ p2R 2 µR.

The following theorem gives a guidance for selecting the
values of s1 and s2 that cause no intensity loss.

Theorem 2. For any protocol P [ P, any body region D [ D,
any image Vi [ VPD, and for any pc1 and pc2, such that p1i ,

µi , p2i, the standardizer tVi
of Vi is a one-to-one mapping

if s2 2 s1 $ (µL 2 p1L 1 p2R 2 µR) · max (µL 2 p1L)/(µl 2 p1l),
(p

2R
2 µR)/(p2r 2 µr).

Note that Theorems 1 and 2 state conditions that require
observing all images in VPD. In practice, since this is
impossible to do, we estimate the right side of ‘‘$’’ in the
expression in Theorem 2 by examining a sufficient number
of volume images and set s2 2 s1 to a number sufficiently
greater than this estimated entity. Our implemented soft-
ware gives a warning message should an image be encoun-
tered for which this condition is violated. Even in such
cases of violation, the software can be used in such way
that, when a violation is detected, s2 2 s1 is automatically
updated so that this condition is indeed satisfied.

In testing 100 proton density (Pd) volume images of the
brain of different patients, acquired as per a fixed fast-spin-
echo protocol on two GE 1.5T scanners, we found that µL 2

p1L 5 1139, p2R 2 µR 5 960, µl 2 p1l 5 693, and p2r 2 µr 5

502 for pc1 5 0 and pc2 5 99.8. By the condition in
Theorem 2, this implies that, with s1 5 1, if we set s2 to at
least 4016, we can make sure that the mapping is lossless
(though probably in many cases a smaller value would be
sufficient). In all our experiments (and current use), we
have set s2 5 4095. This choice has been adequate in all
protocols we currently use and is highly unlikely to lead to
a lossy mapping at least for any proton density brain
images acquired as per the above protocol.

We arrived at the choice of pc2 5 99.8 by the following
experiments. We randomly selected a few Pd brain volume
images acquired as per the above protocol. With pc1 5 0
fixed, we computed p2i for several values of pc2 (in steps of
0.05, between 99.0 and 100.0) for each test image Vi. We

chose the value of pc2 to be the largest value at which the
variation in p2i with respect to changes in pc2 reached an
acceptably small value. Figure 3 shows the plot of the
standard deviation of p2i for the images in the test set
versus pc2 (Fig. 3a) and the derivative of that function (Fig.
3b). The value pc2 5 99.8 corresponds to the shoulder in
the graph on the right where the function starts increasing
rapidly. This implies that beyond this pc2 value, the
variations in the intensities are not systematic but random.

Theorem 3 states that, once the conditions of Theorem 1
are satisfied, the order of the input intensities is main-
tained in the output images.

Theorem 3. For any protocol P [ P, any body region D [ D,
any image Vi [ VPD, any standardizer tVi

of Vi that satisfies
the conditions in Theorem 1, and for any intensities x1 and
x2 of Vi, tVi

(x1) , tVi
(x2) if, and only if, x1 , x2.

That is, the actual order of brightness of tissue regions in
Vi is maintained in the image Vsi output by Algorithm 2,
although their relative contrast may change. In a Pd image

FIG. 3. A plot of the standard deviation of p2i for the images in the test
set vs. pc2 (a), and its first derivative (b). pc2 5 99.8 is approximately
the largest value at which the derivative is still small (0.5).
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of a brain, for example, the known brightness relationship
gray matter . white matter . CSF is maintained in Vsi.

EVALUATION

Our hypothesis is that, for any given protocol P [ P, and
for any body region D [ D, the standardized images Vsi

have more consistent tissue meaning for image intensities
than the images Vi before standardization. That is, after
standardization voxels having the same intensity value are
more likely to contain the same kind of tissue. For testing
this hypothesis, for each protocol P and body region D, we
need to consider the following variations in image data: (i)
intrapatient (time-to-time) variation, (ii) interpatient varia-
tion, (iii) variations among different machines of the same
brand, and (iv) variations among machines of different
brands. Verifying this hypothesis rigorously taking all
these factors into account is indeed a formidable task.
Instead, we will rigorously test the hypothesis for several
protocols and for only one body region, namely the brain,
and for the factors indicated in only (i) and (ii) above. We
will also provide qualitative evidences for the validity of
the hypothesis through display examples before and after
standardization for factors indicated in (i), (ii), and (iii)
above for several P and D.

Qualitative Comparison

We conducted qualitative comparisons for the following
MRI protocols and body regions: fast spin-echo (FSE) Pd,
FSE T2, spin-echo (SE) Pd, SE T2, T1 with Gadolinium
enhancement (T1E), and an SPGR sequence, all for the
brain; a T1-weighted gradient-echo sequence for the foot.
The training set consisted of 10 studies (by a study we
mean a volume image) of different patients in all cases.
There were 30 studies each of FSE Pd, FSE T2, and T1E, and
10 studies each of SE Pd, SE T2, T1 GRE, and SPGR were
transformed using the corresponding ‘‘trained’’ param-
eters. Images of all protocols had bimodal histograms
except SPGR, which had unimodal histograms. In the latter
case, a different landmark set was used in the standardiza-
tion algorithm (see Fig. 1b), but the results are not dis-
cussed here because of space limitations.

The parameters for training were chosen as follows. The
low and high percentiles were set to pc1 5 0 and pc2 5 99.8.
Experiments were also done with other high percentiles
(i.e., 100, 99.5, and 99.0). For the standard scale, we chose
s1 5 1, s2 5 4095. Further, in all cases we made sure that the
standardization mapping was lossless. In all cases, we
derive the standardizer based on the whole volume image
and not on the individual slices.

Histograms

Histograms of 10 FSE Pd studies at different stages of the
transformation are displayed in Fig. 4. The low intensity
part of the histograms that corresponds to the background
voxels has been removed from the display in order to show
the intensity of interest on a better scale. Original histo-
grams of the volume images are plotted in Fig. 4a. Figure 4b
displays the histograms after a simple linear mapping of
[p1i, p2i] to [s1, s2], with pc1 5 0 and pc2 5 99.8. Histograms
after the final standardizing mapping are plotted in Fig.

4c. A visual comparison shows that the histograms are
more similar in shape and location after standardization
than before. This implies that the actual intensity values
and their distribution in the images are more similar after
standardization. Note also that the simple linear mapping
illustrated in the graph in Fig. 4b that accounts for outlier

FIG. 4. Histograms at different stages of the standardization process
for 10 different FSE Pd studies. Original histograms (a), histograms
after intensity scaling from [p1i, p2i] to [s1, s2], with s1 5 1, s2 5 4095
(b), and after final standardization (c).
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intensities is also not enough in making the histograms
cluster.

Display at Fixed Window

Images in the first row of Fig. 5 show a slice from each of
three different patient FSE Pd studies, all acquired using
the same protocol. They are all displayed at a fixed gray
level window that was actually set up for the first image.
This window does not seem to be appropriate for the other
two datasets because they have quite different intensity
ranges. In the second row of Fig. 5, the same slices are
displayed, after standardization (always on the whole
volume image) using pc2 5 99.8, at a fixed ‘‘standard’’ brain
window that we devised after examining a few standard-
ized images. In Table 1, we list for several different
protocols such ‘‘standard’’ window settings (level and
width) that we have devised in this fashion. The structures
are well portrayed and the brightness and contrast are more
similar than that of the originals. A similar behavior was
observed on FSE T2, SE Pd, and SE T2 images.

Figure 6 is analogous to Fig. 5. It shows images before
and after standardization for a T1 protocol with Gadolin-
ium enhancement. All images shown are acquired using
the same protocol. The first row shows the original data
displayed using the default window setting (i.e., window
level set to the middle of the full range, and window width
set to the full range of intensities of the study). The second
row shows the same slices after standardization displayed
using the ‘‘standard’’ brain window settings from Table 1.

Figure 7 illustrates the improvements resulting from stan-
dardization for a different body region, namely the foot. The
imaging protocol in this case was a T1-weighted gradient-
echo sequence and was the same for the three studies.

The following example is included to demonstrate that
the standardizer still works when substantial deviations
exist in the test images compared to the images used for
training. Figure 8 shows a dataset of the brain of a patient
with a large tumor. The first row of Fig. 8 shows a slice of a
FSE Pd and a FSE T2 dataset before standardization and the
second row shows the same slices after standardization. In
this case, the standardizer was arrived at from the training
data utilized for the multiple sclerosis (MS) patient FSE Pd
(Fig. 5) and FSE T2 images with a similar (but not identical)
protocol.

In Figure 9, we illustrate that the method is tolerant to
small variations in protocol settings as well as variations
that may exist among machines of the same brand in
different hospitals. The figure shows three different patient
studies obtained from a GE 1.5T Signa scanner at the
University of Colorado Health Sciences Center (data cour-
tesy of Dr. Jack Simon) using an SE Pd protocol. Images

FIG. 5. Original slices from three studies acquired as per the same
FSE Pd protocol before standardization displayed at a fixed window
that was actually set up for the first image (first row), and after
standardization displayed at a fixed ‘‘standard’’ window (second row).

Table 1
‘‘Standard’’ Windows for the Brain Images for Different Protocols
Arrived at From the Standardized Images

Level Width

FSE Pd 2510 3444
FSE T2 2306 4523
T1E 2048 3500
SE Pd 2812 4095
SE T2 2327 4095

Similar tables can be constructed for other body regions, protocols,
and for specific tissue regions.

FIG. 6. Original slices from three studies acquired as per the same
T1 protocol with Gadolinium enhancement before standardization
displayed at default windows (first row), and after standardization
displayed at a fixed ‘‘standard’’ window (second row).

FIG. 7. Original slices of three foot studies before (first row), and
after standardization (second row). The imaging protocol for all three
datasets was a T1-weighted gradient-echo sequence with identical
parameters.
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before standardization (displayed using the default win-
dow settings) are shown in the first row. The second row
shows the same slices after standardization displayed by
using the ‘‘standard’’ window setting from Table 1. In this
case, training was done utilizing the SE Pd image data
acquired on a scanner of the same brand in our hospital.

Cross and Mixed Training

The example illustrated in Fig. 10 shows that the method is
robust against small variations in protocol settings. The
first row of Fig. 10 shows three SE Pd studies before
standardization (displayed with the default window set-
ting). The second row shows the same slices after standard-
ization with the parameters that were derived from a
training set of an identical SE Pd protocol. These images
are displayed with the ‘‘standard’’ window setting for SE
Pd listed in Table 1. The third row shows the same slices
after standardization with the parameters that were de-
rived from a training set of images acquired as per an FSE

Pd protocol. These images are displayed with the ‘‘stan-
dard’’ window setting for FSE Pd listed in Table 1. The
main difference between the two mappings is a shift of the
second mode. This is silently corrected for display when
the proper window setting is applied. After both transfor-
mations and by using the corresponding window settings,
the images look similar and have good brightness and
contrast.

The training based on a set of images of a given protocol
P and body region D makes the standardizer tuned tightly
to the images in VPD. This is due to the fact that the
variation among histograms of images in VPD is less than
that of images taken from VPD and VP8D8 where P Þ P8 and/or
D Þ D8. However, images of different protocols and body
regions can be mixed for training and still create a standard-
izer that fosters consistency of tissue meaning of intensi-
ties. This is illustrated in Fig. 11, where images from four
different combinations of protocol and body region were
utilized in the training step and in devising the standard-
izer. All images (FSE Pd, T2, T1E brain, and GRE foot) were
collected into a pool and were not distinguished during the
training. That is, a single parameter configuration (i.e.,
pc1 5 0, pc2 5 99.8, s1 5 1, and s2 5 4095) were applied to
all images in the training pool. The figure quite elegantly
demonstrates that the standardized images show a better
consistency of brightness and contrast at fixed window
displays (bottom row) than the original images displayed at
a default window for each image (top row). This observa-
tion invites the question whether it is possible to devise a
whole-body standardizer which will obviate the need for
protocol- and body-specific standardizers. We will not
pursue this investigation here.

FIG. 8. Original slices, before standardization, of FSE Pd (left) and
T2 (right) datasets of a patient’s brain with a large tumor displayed at
default windows (first row), and after standardization, displayed at a
standard window setting (second row) listed in Table 1 for the FSE Pd
and T2 case.

FIG. 9. Three SE Pd studies acquired as per the same protocol
before standardization at default windows (first row), and after
standardization displayed at a standard window (second row). The
training data were acquired as per a similar protocol (with slightly
different parameters) from a scanner of the same brand at a different
hospital.

FIG. 10. Original slices from three studies acquired as per the same
SE Pd protocol before standardization displayed at default windows
(first row), the same slices displayed at a fixed ‘‘standard’’ window
after standardization with the parameters that were derived from a
training set of an identical SE Pd protocol (second row), and after
standardization with the parameters that were derived from a training
set of images acquired as per an FSE Pd protocol displayed at the
‘‘standard’’ window for FSE Pd (third row).
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Quantitative Comparison

In order to assess the effectiveness of the standardization
method objectively, we conducted two types of quantita-
tive tests on datasets of brain obtained from three proto-
cols: FSE Pd, FSE T2, and T1E. The first test is for assessing
intrapatient variation before and after standardization. In
the second test, we used an algorithm (5) to segment
different tissue regions and compared intensity statistics in
different segmented tissue regions for assessing interpa-
tient variation before and after standardization.

Intrapatient Variation

We used the same training datasets and parameter configu-
rations as for qualitative comparison. The test method for
all three protocols was the same. Two studies (volume
images) acquired at different time instances were selected
randomly for each of 15 MS patients from our database.
The time distance between the two scans of the same
patient varied between 1 and 6 years. For each patient, we
registered the first scan to the second via a rigid transforma-
tion based on intensity value correlations. Because these
patients had MS, the lesions were segmented (4,5) and
removed for the purpose of comparison for minimizing
variations in the two images of the same patient that may
have been caused by the disease. The similarity of a pair of
these registered, lesion-removed images was measured by
the mean squared intensity difference between the two
images normalized by the range of the image intensities of
the older image in the pair. This similarity measure,
denoted NMSD, was computed for every pair of volume
images before and after intensity standardization for each
of the three protocols.

Table 2 shows that the mean and the standard deviation
of the NMSD over all studies after standardization are
smaller than that before standardization. The values of
NMSD for the 15 pairs of studies were compared using a
paired t-test under the null hypothesis that there is no
difference in NMSD before and after standardization. The
hypothesis was rejected at a significance level of P , 0.01,
indicating that the change in NMSD is statistically significant.

Intensities in those parts of the image that have experi-
enced no changes due to changes in the patient over time
are made considerably more repeatable after standardiza-
tion than before. Further, the lower standard deviation of
NMSD achieved after standardization indicates that the

uniformity of intensity meaning resulting from standardiza-
tion is less dependent on the patient.

Interpatient Variation

For this comparison, we randomly selected 12 FSE Pd and
12 FSE T2 volume images from our database. For each
patient only one time instance is considered. All images
were then segmented into white mater (WM), gray matter
(GM), cerebrospinal fluid (CSF), and MS lesion (LS) re-
gions (5). For each of these regions in each image Vi in each
of these protocols, we calculated the normalized mean
intensity (NMI) by dividing the mean intensity in the
region by p2i 2 p1i. This was repeated for the standardized
image Vsi of Vi wherein normalization was done by divid-
ing by s2 2 s1. The standard deviations of the NMI values
over the 12 volume images before and after standardization
for both protocols and for WM, GM, and CSF tissue regions
are shown in Table 3, together with the corresponding 95%
confidence intervals (assuming a normal distribution for
all NMI values) and percent coefficient of variation (CV) of
NMI. The results indicate that for every tissue region in
both protocols tested, the standard deviation of NMI values
is reduced by a factor of 2 to 3 after standardization and
%CV is reduced considerably. This implies that a substan-
tially improved uniformity of tissue meaning for intensi-
ties is obtained across patient studies after standardization.

CONCLUDING REMARKS

We have described a method for standardizing MR image
intensity scales in this article. Our goal was to devise a
method that post-hoc makes an intensity transformation of
images that are routinely acquired, without requiring spe-

Table 2
Mean and Standard Deviation of Normalized Mean Squared
Differences (NMSD) Before and After Standardization for 15 Pairs of
Studies and for Three Different Protocols

FSE Pd FSE T2 T1E

Mean SD Mean SD Mean SD

Before 0.0099 0.0094 0.0093 0.0085 0.0025 0.0018
After 0.0039 0.0055 0.0036 0.0050 0.0020 0.0018
P-value 0.0094 0.0036 0.0450

Each pair represents the studies obtained for the same patient at two
time instances. The P-values of paired t-tests are also shown.

FIG. 11. Illustration of the effect of mixed train-
ing. Ten brain studies from each of FSE Pd (first
column), FSE T2 (second column), and T1E (third
column), and 10 T1-weighted gradient-echo stud-
ies of the foot (fourth column) were used in
training. The first row shows the display at a
study-specific default window of one slice of a
study from each of these protocols before stan-
dardization. The second row shows the same
slices after standardization displayed at one
fixed window.
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cialized acquisition protocols and calibration phantoms.
The standardizing method aims at achieving consistency of
tissue meaning of intensities by devising a transformation
that is specific to a given MRI protocol and body region.
The basic idea is to deform the histogram of a given volume
image so that it matches a ‘‘standard’’ histogram for that
protocol-body-region group. The parameters of the stan-
dard histogram are learned in a training step. We have
provided theoretical guidelines, and a practical demonstra-
tion of how to utilize them, for selecting the values of the
parameters of the method and proved that lossless inten-
sity transformation and order is guaranteed, if choices are
made as per guidelines.

The choice of the actual landmarks is an important
factor. Other landmarks (e.g., median instead of the mode
of the second hump) can be used that are more suitable, or
more sophisticated curve fitting can be done to make the
histograms more similar. We mention some possible
changes to the basic standardization method that can be
incorporated to make it better fit the type of input data and
the actual application: 1) use more histogram landmarks,
such as quartiles and deciles, 2) use polynomial functions
to ‘‘stretch’’ the histogram segments, and 3) use spline-
fitting techniques instead of segment-by-segment linear
‘‘stretching.’’

We have presented two types of studies to assess the
degree of uniformity of intensity meaning achieved after
standardization. In qualitative studies, we have shown
through image display examples for several protocols and
body regions that the consistency of the brightness level
and contrast of images is considerably improved after
standardization. This permits standardizing and fixing
‘‘windows’’ by protocol, body region, and tissue regions.
This will minimize or eliminate the human interaction
required in the per-case manual window adjustments that
are currently required in visualizing MR images on physi-
cian viewing stations. This may also help in filming MR
studies with a uniform appearance of the images. In
quantitative studies, we have assessed the scanner-
dependent intra- and interpatient intensity variations and
demonstrated that these are substantially reduced after
standardization. In a subjective examination of the image
displays from over 100 studies, we have not come across
any case where the method seemed to have failed. A formal
observer study is currently under way to assess this
component.

The method is simple, fast, easy to implement, and
completely automatic. In a Picture Archiving and Commu-
nication System, it can be incorporated as a DICOM Value
of Interest lookup table so that images are automatically
transformed or accompanied by the correct lookup table
when they are downloaded to the viewing station. It can
even be built into the MR scanner to automatically produce
images with the standard scale.

Our preliminary studies indicate that image analysis and
tissue segmentation methods—our main motivation to
undertake this research—are considerably improved in
terms of their constancy of parameter settings and their
degree of automation. With standardization, numerical
meaning is achieved and, hence, numerical diagnosis and
study of diseases may become possible. For example, for
MS studies we may be able to specify an interval [t1, t2] of
the standardized Pd values which correspond to normal
WM tissue, another interval [t3, t4] corresponding to WM
that is normal appearing but that is actually affected by the
disease. Our preliminary results indicate that when the
values of the imaged parameter (T2, Pd, etc.) do not
intrinsically overlap for the different tissues, then such a
numerical characterization may be possible. We use the
standardization method as the first step in all MR image
visualization and analysis tasks in which we are currently
engaged.

Figures 10 and 11 indicate a possible simplification of
our approach. Instead of devising the standardization
transform by protocol and body region, it may be possible
to devise them based only on the type of the histogram (Fig.
1). That is, the protocol- and body-region-specific training
and transformation will then be obviated, hopefully achiev-
ing consistency of intensity meaning independent of the
protocol and body region. If we match the shoulder of the
single mode in Fig. 1b with the second mode in Fig. 1a for
images with different types of histograms, it may even be
possible to devise standardization schemes that are inde-
pendent of the histogram type.
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Table 3
Standard Deviation, the 95% Confidence Interval (CI) of the Normalized Mean Intensity (NMI) Values and % Coefficient of Variation (CV) of
Different Tissues in FSE Pd and T2 Images

FSE Pd FSE T2

SD CI low CI high %CV SD CI low CI high %CV

WM
Before 0.1047 0.6572 0.7757 14.61 0.0580 0.3580 0.4236 14.83
After 0.0113 0.5523 0.5651 2.03 0.0091 0.3456 0.3559 2.59

GM
Before 0.1144 0.7189 0.8483 14.59 0.0643 0.4124 0.4852 14.33
After 0.0067 0.6230 0.6306 1.07 0.0119 0.4502 0.4636 2.60

CSF
Before 0.0884 0.5323 0.6323 15.18 0.0791 0.4564 0.5458 15.78
After 0.0172 0.5309 0.5504 3.18 0.0348 0.6596 0.6989 5.12
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