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A Nonparametric Method for Automatic Correction
of Intensity Nonuniformity in MRI Data

John G. Sled,* Alex P. Zijdenbos,Member, IEEE, and Alan C. Evans

Abstract—A novel approach to correcting for intensity nonuni-
formity in magnetic resonance (MR) data is described that
achieves high performance without requiring a model of the tissue
classes present. The method has the advantage that it can be
applied at an early stage in an automated data analysis, before a
tissue model is available. Described as nonparametric nonuniform
intensity normalization (N3), the method is independent of pulse
sequence and insensitive to pathological data that might otherwise
violate model assumptions. To eliminate the dependence of the
field estimate on anatomy, an iterative approach is employed to
estimate both the multiplicative bias field and the distribution
of the true tissue intensities. The performance of this method is
evaluated using both real and simulated MR data.

Index Terms— Intensity nonuniformity, magnetic resonance
imaging, RF field inhomogeneity, shading artifact.

I. INTRODUCTION

M AGNETIC RESONANCE (MR) signal intensity mea-
sured from homogeneous tissue is seldom uniform;

rather it varies smoothly across an image. This intensity
nonuniformity is usually attributed to poor radio frequency
(RF) coil uniformity, gradient-driven eddy currents, and pa-
tient anatomy both inside and outside the field of view.
Although these 10%–20% intensity variations have little im-
pact on visual diagnosis, the performance of automatic seg-
mentation techniques which assume homogeneity of intensity
within each class can be significantly degraded. A robust,
automatic, and inexpensive means of correcting for this artifact
is essential for such automatic processing techniques to be
accurate in labeling each voxel with a tissue type. Furthermore,
correcting for intensity nonuniformity may benefit quantitative
measurements such as those used in tissue metabolite studies.

In considering MR intensity nonuniformity it is important to
distinguish between the rapid interslice variations sometimes
observed with two-dimensional (2-D) multislice sequences and
the smooth intensity variations present in most acquisitions
including those using three-dimensional (3-D) sequences. The
former can be dealt with by methods which normalize the
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intensities of individual slices [1]–[5]. Correction for the latter
is the subject of this paper.

Besides being smoothly varying within homogeneous re-
gions, the model for intensity nonuniformity is not easily
characterized. Nonuniformity due to the frequency response
of the receiver and spatial sensitivity of the unloaded RF coils
is systematic and can in principle be corrected for by regular
calibration or theoretical modeling [6], [7]. However, nonuni-
formity due to induced currents and the spatial inhomogeneity
of the excitation field depend on the geometry and electrical
properties of the subject as well as the pulse sequence and
coil polarization [8].

Stollberger and Wach [9] have described a method for
measuring the RF excitation fieldin vivo based on the change
in nonuniformity with excitation flip angle. A complementary
method for measuring the static uniformity of the reception
coil in vivo, by imaging with a second reception coil, is
described in [10]. Given anin vivo map of the RF excitation
and reception fields one can correct for intensity nonuniformity
using the Bloch equations [11]. Although the extended scan
time of the former methods makes them impractical for clinical
use, faster techniques such as echo-planar imaging (EPI) can
be used to more rapidly acquire RF field maps [12]. However,
EPI hardware is not always available and the need to collect
this additional data precludes retrospective analysis.

As an alternative to improving intensity uniformity during
data acquisition, a number of post-processing methods to
compensate for nonuniformity have been proposed [13]–[18].
However, the need for expert supervision, in choosing a set
of sample voxels expected to have similar intensities for
example, has prevented their widespread use. Robust and
automatic, the strength of the nonuniformity correction method
described here is that it requires neither extended scan time nor
expert supervision. In this report we describe the N3 method
and present validation results using both simulated and real
volumetric magnetic resonance imaging (MRI) data.

II. THEORY

A. Nonuniformity Model

The problem of correcting for intensity nonuniformity is
greatly simplified if it is modeled as a smooth multiplicative
field. This model has been widely used [14]–[16], [18] and is
consistent with the multiplicative nonuniformity arising from
variations in the sensitivity of the reception coil and to a lesser
extent with the nonuniformity due to induced currents and
nonuniform excitation.
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(a) (b) (c)

Fig. 1. Probability densities for fields estimated from white matter on MR scans of 12 individuals taken with 12 different MR scanners. Note that these
are the distributions of the intensitiesf rather than log intensities^f . The T1 scan is a gradient-echo 3-D acquisition with TE= 11 ms and TR= 35
ms, while the proton density (PD) and T2 scans are two echoes TE= 30 ms and TE= 80 ms of a multislice spin echo acquisition with TR= 3
s. (a) T1-weighted, (b) T2-weighted, and (c) PD-weighted.

Consider the following model of image formation in MR:

(1)

where at location is the measured signal, is the true
signal emitted by the tissue,is an unknown smoothly varying
bias field, and is white Gaussian noise assumed to be
independent of . The problem of compensating for intensity
nonuniformity is the task of estimating. The combination
of additive and multiplicative interference makes this task
difficult.

Consider a noise-free case in which the true intensitiesat
each voxel location are independent identically distributed
random variables. Using the notation the
image formation model becomes additive

(2)

Consider the distribution of values that takes over the
region of interest (ROI) to be the probability distribution of a
random variable. For example, ifis a linearly increasing field
aligned on a rectangular region thenwill have a uniform
distribution.

Let , and be the probability densities of , and
, respectively. Making the approximation thatand are

independent or uncorrelated random variables, the distribution
of their sum is found by convolution as follows (for details
see [19]):

(3)

The nonuniformity distribution can be viewed as blurring
the intensity distribution .

B. Correction Strategy

From a signal processing perspective, the blurring due to the
field reduces the high frequency components of. The task of
correcting for intensity nonuniformity is that of restoring the
frequency content of . Since the shape of the blurring kernel

is not known, it is not clear what frequency components of
need to be restored to get from the observed distribution

to the true distribution . However, since the nonuniformity
field is restricted to be smooth and slowly varying, the
space of possible distributions corresponding to a given

distribution is small enough that the problem becomes
tractable. Our approach to correcting for nonuniformity is
to find the smooth, slowly varying, multiplicative field that
maximizes the frequency content of.

As evidence of the simple form of the distribution,
consider the distributions shown in Fig. 1. These have been
derived from fields fitted to manually labeled regions of white
matter on 12 individuals. Each individual was scanned using
the same pulse sequences but on a different MR machine
(data collected as part of multicenter clinical trial). Included
in the 12 are machines made by Philips, Siemens, and GE.
As shown, the large scale features ofvary little between
scans. In particular, is typically unimodal or at least well
approximated by a unimodal distribution. These results also
suggest that the full width at half maximum (FWHM) of the
distribution lies between 0.1 and 0.4 for typical brain scans.

Returning to the optimization criterion, one could in prin-
ciple search through all possible fieldsto find the one that
maximizes the high frequency content of. However, there
are two problems with this approach: the search space of all
3-D fields is extremely large; and spectral estimates and
related measures such as entropy are difficult to compute with
sufficient accuracy to detect subtle changes in.

Our approach is to propose a distribution forby sharp-
ening the distribution , and then to estimate a corresponding
smooth field which produces a distributionclose to the one
proposed. While searching through the space of all distribu-
tions may seem no more tractable than searching through
the space of all fields, there is an important difference in that
we can take advantage of the simple form of the distribution.
Suppose that the distribution of is Gaussian. Then we need
only search the space of all distributionscorresponding to
Gaussian distributed having zero mean and given variance.
In this way the space of all distributions is collapsed down
to a single dimension, the width of the distribution.

In practice, the field distribution is only approximately
Gaussian and some of our assumptions, such as zero noise,
are violated. To contend with these difficulties, we take an
incremental approach to estimating the true distribution of
intensities and corresponding field. Since any Gaussian
distribution can be decomposed into a convolution of nar-
rower Gaussian distributions, the space of alldistributions
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corresponding to Gaussian distributed can be searched
incrementally by deconvolving narrow Gaussian distributions
from subsequent estimates of. The benefit of this approach
is that between subsequent estimates of, a corresponding
smooth field is estimated. The constraint that the field be
smooth changes the shape of the proposed distributionto
one that is consistent with the field. These perturbations of

perturb from its Gaussian shape and compensate for
the distortion of caused by noise and other factors. The
iterative process can be viewed as traveling in the space of all

distributions along a path corresponding to smooth fields
with increasingly wider distributions. These iterations proceed
until no further changes in or result from deconvolving
narrow Gaussian distributions from.

C. Field Estimation

Further theory is presented here to explain the process of
proposing distributions for and estimating corresponding
fields. For notational simplicity, we will assume that the true
distribution of intensities can be arrived at in a single
iteration by deconvolving a distribution, which is Gaussian,
from . The full iterative description of the method is left for
a subsequent section.

Given the distribution , the method of estimating the
corresponding field is as follows. For a measurementat some
location is estimated using the distributions and .
Since the choice of the locationis arbitrary, the measurement

can be treated as a random sample from the distribution.
The expected value of given a measurementis as follows:

(4)

(5)

Writing as and using (3), we have

(6)

(7)

(8)

(9)

An estimate of can be obtained using the estimate offrom
(9) as follows:

(10)

where is an estimate of at location based on the single
measurement of at . This estimate can be smoothed by the
operator to produce

(11)

an estimate of based on all of the measurements in a
neighborhood of . Smoothing is described in a subsequent
section.

Given a distribution and the measured distribution of
intensities , the distribution can be estimated using a
deconvolution filter as follows:

(12)

(13)

where denotes complex conjugate,is the Fourier transform
of , and is a constant term to limit the magnitude of.
This estimate of is then used to estimate a corresponding
field .

D. An Example in One Dimension

This process of estimating is illustrated in Fig. 2 for the
one dimensional (1-D) case with as a square wave. The
square wave can be viewed as two tissue classes corresponding
to the low and high parts of the cycle. The log intensities

, , and are shown in Fig. 2(a). The magnitude of the
nonuniformity field is just large enough that the low intensity
tissue on the left overlaps by roughly 10% with the intensity
of the high-intensity tissue on the right.

We obtain the probability densities, , and by comput-
ing the histogram of the signals , and . These distributions
are shown in Fig. 2(b)–(d), respectively. These histograms are
interpreted as the probability distributions of the given signal.
In practice, only will be known while and have to
be estimated. Shown in Fig. 2(e) is the Gaussian kernel used
in place of the actual distribution of in (9). Although its
exact width is arbitrary, note that this distribution is narrower
than .

The distributions and the Gaussian kernel are used to
compute from (10) the mapping, shown in Fig. 2(f), which
maps measured intensitiesto field estimates . This map-
ping when applied to the measured signal produced the field
estimate shown in Fig. 2(g). Note the sharp jumps in this
estimate in the regions where the intensities of the upper and
lower tissue classes overlap. This field estimate is smoothed to
produce shown in Fig. 2(h). While the degree of smoothing
is arbitrary, in filtering terms the smoothing filter should be
chosen to have as small a bandwidth as possible yet still
pass the nonuniformity field undistorted. In particular, it is not
necessary to have a smoothing filter able to remove the sharp
jumps in shown in Fig. 2(g) since these can be removed
in subsequent iterations.

While the smooth field estimate after one iteration is not
sufficient to completely remove the nonuniformity, it is enough
of a correction that the tissue distributions no longer overlap.
If we use the smooth estimate of the field to correct the
measured signal and repeat the entire estimation process
again, we arrive at a second estimate of the nonuniformity
field that is indistinguishable from the true field. The second
estimates of and are shown in Fig. 2(g) and (h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. An example of nonparametric correction of a 1-D signal. See
Section II-D for detailed explanation: (a)̂u(x); f̂(x); andv̂(x), (b)U(û), (c)
F (f̂), (d) V (v̂), (e) a Gaussian kernel, (f)̂fe(v̂) = v̂�E[ûjv̂], (g) f̂e[v̂(x)],
and (h) f̂(x) and f̂s(x).

E. An Example Using a Simulated MR Volume

As an illustration of the field estimation process in 3-D,
consider the simulation of a T1-weighted MR scan shown
in Fig. 3(a). This simulation, described in more detail in
Section III-B, is based on a three tissue model of the brain and
incorporates intensity nonuniformity, noise, and partial volume
effects. The measured intensity distribution is shown in
Fig. 3(b). The mapping between measured intensity and field
estimate for this volume based on the distributions of
and a Gaussian distribution with full-width–half-maximum
(FWHM) of 0.15 is shown in Fig. 3(d). This mapping is
applied to produce the volume in Fig. 3(c). Measurement noise
causes this estimate to be noisy. Smoothing this estimate
produces the field shown in Fig. 3(e). For comparison, the

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Field estimates for a simulated MR volume. (a) A slice from a
simulated MR volume. (b) The histogram of the volume shown in (a). This
is considered an estimate of the distributionV . (c) Bias field estimatesfe
created by applying the mapping in (d) to the image in (a). (d) The mapping
between image intensity and bias field estimate, derived from the histogram
in (b). (e) A smoothed estimatefs of the bias field created by smoothing the
volume shown in (c). (f) The actual bias field present in the volume shown
in (a). See Section II-E for further details.

actual field imposed on the data during simulation is shown in
Fig. 3(f). Although the estimated field is much smaller in mag-
nitude than the true field, the shape is similar. Experiments,
described later, show that with subsequent iterations the field
estimate will grow to narrow this difference.

F. Implementation Details

A flow chart describing the nonparametric correction
process is shown in Fig. 4. Besides the processing steps
described previously, there are a number of steps needed for
practical implementation of the algorithm.

The first step shown in Fig. 4, “identify foreground,” is
to segment and remove empty regions from the volume.
Besides the numerical problems associated with transforming
values near zero to the log domain, these background regions
provide no information about the nonuniformity field. Since
the accuracy of this segmentation is not critical, the foreground
is determined using a simple threshold chosen automatically
by analyzing the histogram of the volume [20].

Another consideration in implementing the N3 approach
is measuring the distribution from the unprocessed MR
data. For simplicity, a histogram with equal-size bins and a
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Fig. 4. A flow chart describing the N3 method. Ellipses represent
user-selected parameters and priors. Rectangles are processing steps. The
flow of volumetric data is represented by solid lines and of other data by
dashed lines. Circles perform arithmetic operations on a voxel by voxel basis.
The result of the process is a corrected volume.

triangular Parzen window [21] is used to estimate. Given a
set of measurements and locations , is estimated
as follows:

(14)

elsewhere
(15)

where are the centers of the bins and is the distance
between them. For a typical 20% bias field, the scale factor

ranges from 0.9 to 1.1 which corresponds tobetween 0.1
and 0.1. MR volumes generally have sufficient data to estimate

at a resolution better than a tenth of this range.
Smoothing the nonuniformity field at full resolution is com-

putationally expensive, so the MR data is subsampled without
averaging to a lower resolution. Since the nonuniformity field
is slowly varying, reducing a 1-mm isotropically sampled
volume to 3 mm has a negligible effect on the field estimate
and substantially accelerates computation. The processing of a
volume with ten iterations of the N3 method is reduced from
4.5 h to 7 min of CPU time on an 200-MHz Intel Pentium
workstation running Linux (floating point performance: 5.0
SPECfp95) by resampling to the coarser resolution. The final
field estimate is resampled to the original resolution and used
to correct the original volume.

The measure used to terminate the iterations is the co-
efficient of variation in the ratio between subsequent field

estimates, computed as follows:

(16)

where is the ratio between subsequent field estimates at
the th location, denotes standard deviation, anddenotes
mean. This measure is chosen so as to be insensitive to global
scale factors that may accumulate with iterations. Iteration
is stopped when drops below 0.001, typically after ten
iterations.

G. Smoothing

The manner in which the field estimate is smoothed has
a significant impact on the performance of the correction
method. Smoothing is particularly challenging for this problem
because the scale over which the field varies is comparable to
the size of the region being smoothed. Conventional filtering
techniques proved unsatisfactory for this application since
boundary effects significantly degraded overall performance.

A computationally tractable approach to smoothing that
performs well on bounded domains is to approximate the
data by a linear combination of smooth basis functions. An
attractive basis for this is the compactly supported spline
known as a spline. Spline approximation incorporating
smoothness constraints is superior to filtering techniques in
dealing with missing data since the behavior of a spline curve
can be constrained even if there is insufficient data to support
a basis function.

Details of computing a spline approximation can be found
in the Appendix. The smoothness of the approximation is
determined by two parameters:, referred to as the smoothing
parameter, and, the distance between basis functions. Since
splines are being used as a filter for this application, the
smoothness of the approximation must be chosen rather than
derived from the data [22], [23]. The relationship between the
smoothness of the approximation and the smoothing parameter
is nonlinear. However, since the normalization of thespline
has been chosen to eliminate the dependence ofon scale
and number of data points, can be fixed and the distance
between basis functions varied instead.

III. EXPERIMENTS

A. Correcting Random Fields

As a first step in validating the N3 method, consider a case
in which the measurements are independent and identically
distributed random variables. Suppose the distribution of the
true intensities is as shown in Fig. 5(a). While this distri-
bution is taken from a T1-weighted MR scan, the choice of

for the purpose of this example is arbitrary. The volume
is a cube with 32 voxels on an edge and the nonuniformity
field to be removed is a parabolic function aligned with the
center of the volume. The corresponding distributionof
the nonuniformity field is shown in Fig. 5(b) along with the
distribution in Fig. 5(c).

A slice through the center of this idealized volume is shown
in Fig. 5(d) and (f) before and after the nonuniformity field
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. (a) Intensity distributionU for an idealized volume. Random samples
from this distribution are used to create the volume in (d). (b) Distribution
F for a parabolic nonuniformity field. (c) DistributionV corresponding to
volume shown in (f). (d) A slice through a random volume. (e) and (g)
A parabolic nonuniformity field. (f) The volume in (d) multiplied by the
parabolic field in (e). (h) Estimated field. (i) Ratio of actual field to estimated
field.

is applied. Although the volume itself appears noise-like,
measurement noise is taken to be zero for this experiment.
We compared convergence rate and accuracy of the N3 method
in removing the nonuniformity field for different widths of the
estimated field distribution . In addition, the N3 method is
compared to simple filtering. The results of these and following
experiments are described in the next section. The significance
of this experiment is to demonstrate how the N3 method is
able to take advantage of the structure of the distribution
as compared to conventional filtering.

The performance of a correction method is best evaluated
by comparing the field estimate to the true field if it is known.
For example, a field estimate made for the random volume of
Fig. 5(f) is shown in Fig. 5(h) along with the actual field in
Fig. 5(g). Besides differing subtly in shape, the two surfaces
also differ by a multiplicative factor. This scale factor has no
impact on the quality of the correction since MR intensity
is relative. However, in quantifying the performance of the
method this factor needs to be removed. Equation (16) can
also be used for this purpose if is taken as the ratio of
estimated to actual field intensity at location. This is the
coefficient of variation of the field shown in Fig. 5(i).

B. Simulated MR Volumes

Nonuniformity correction methods such as N3 can be vali-
dated with real data using subjective measures of image quality
and by assessing the reduction of variability in tasks such

(a) (b) (c)

Fig. 6. Simulated T1-, T2-, and PD-weighted volumes. Nonuniform sensi-
tivity of the reception coil has been simulated causing the intensity to drop
off at the bottom right. The noise distribution has a standard deviation 3% of
the mean intensity of white matter.

as segmentation. However, the large number of uncontrolled
factors in such experiments confound attempts to evaluate and
optimize performance. In particular, partial volume effects,
true anatomical variability, and an unknown nonuniformity
field prevent a sensitive analysis of methodological parameters.
These technical issues are circumvented in our analysis by the
use of an MR simulator which incorporates realistic models
for noise and partial volume. Slices through simulated T1, T2,
and PD volumes are shown in Fig. 6.

The anatomical model for the simulations is derived from
high-quality T1-, T2-, and proton density (PD)- weighted scans
formed from the average of 27, 12, and 12 scans, respectively
[24], [25] of a normal individual. The three volumes were
resampled into stereotaxic space with 1-mm isotropic sampling
and corrected for intensity nonuniformity using the N3 method.
The brain region of the T1-weighted scan was then segmented
into the three tissue classes using a manually trained minimum
distance [26] classifier. Among the results of several different
classifiers, this segmentation was chosen and manually edited
by a neuroanatomist to improve the classification of deep
structures and brain stem. Partial volume regions were formed
by eroding each of the tissue regions using a six neighbor
structuring element. The proportions of each tissue class in
the partial volume regions were taken from a segmentation of
the T1 volume using a Bayesian classifier [21], [27].

The MR simulator is designed to produce volumes with an
intensity histogram similar to that of real data, based on a
discrete labeling of each voxel as either cerebrospinal fluid
(CSF), grey matter, or white matter. However, representing
an MR volume in terms of a few classes of homogeneous
tissue is unsatisfactory for simulation since it does not reflect
the variability seen in real data. Often the properties of a
tissue class vary for different structures [28], which leads to a
broadening of the peaks in the histogram. The approach taken
to produce a simulation with a convincing histogram is to
color each region with random noise having medium to low
spatial frequency and an intensity distribution appropriate for
the given tissue type. This noise can be viewed as “pseudo-
anatomy,” representing spatial variations within tissue due to
anatomy. By validating the correction algorithm on a number
of realizations of this pseudo-anatomy, we avoid biasing the
results toward any preferred shape of the bias field.

To complete the simulation, a multiplicative intensity
nonuniformity field is imposed on the volume and Rician
distributed noise is added throughout. Rician noise, typical
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(a) (b) (c)

Fig. 7. Intrinsic intensity distributions for each tissue class in T1-, T2-, and PD-weighted simulations.

of that found in real MR images, is simulated by adding a
complex Gaussian distributed random intensity to a voxel,
then computing its absolute value.

The intensity distributions used to generate the pseudo-
anatomy were created by computing the histogram of intensi-
ties within the eroded or pure tissue regions for each of the
T1, T2, and PD averages. These distributions are shown in
Fig. 7. We assume that these distributions reflect the range of
intensities intrinsic to the tissue class uncorrupted by noise,
intensity nonuniformity, and partial volume effects. Random
fields having these intensity distributions were created by
rejection sampling [19]. Each random field is first constructed
at 10-mm resolution and subsequently resampled to the desired
1-mm resolution using tricubic interpolation.

C. Correcting Simulated Data

Although N3 does not require a model of the expected tissue
distributions, there are still a number of model-independent
parameters that need to be selected (see Fig. 4). These are the
smoothing parameter, the distance between basis functions
, the noise term in the deconvolution filter, and the FWHM

of the deconvolution kernel . Experiments with simulated
data show little dependence on, which was fixed arbitrarily
to be 0.1 for the purpose of this analysis. The parameters
and both control smoothness, but the relationship between
smoothness and is more complex than the one between
smoothness and. As a result, was fixed arbitrarily at
1.0. The remaining two parameters, FWHM and, will be
considered further.

Simulated MR volumes like those shown in Fig. 6 were used
to evaluate the effect of FWHM on correction performance.
For this analysis, two different nonuniformity fields were gen-
erated from combinations of linear, quadratic, and Gaussian
terms. Both fields vary in magnitude by 20% within the brain
volume; the second field has more curvature. Slices from these
two fields are shown in Fig. 8. The first field is barely visible
in the simulations shown in Fig. 6. The performance of the
correction method is evaluated using (16) to compute the
difference expressed as a percentage between the estimated
field and that imposed explicitly during simulation.

In addition, an analysis of the effect of basis function
distance on correction performance, for a fixed FWHM,
was done using the same simulated data. These results were

(a) (b)

Fig. 8. Slices through two nonuniformity fields used to construct simulated
MR scans. (a) Field #1. (b) Field #2.

compared against the results of fittingsplines to the imposed
field directly.

D. Correcting Experimental Data

Correction of real MR scans is the final step in validating
the N3 method. For this experiment, regions of pure grey and
white matter were manually labeled on 12 sets of T1-, T2-,
and PD-weighted scans acquired at 12 different sites. The
volumes were transformed into stereotaxic space so that the
same labeling may be applied to each of the three modalities.
All 12 individuals are multiple sclerosis patients having a
moderate number of white matter lesions.

For each volume, the coefficient of variation in white and
grey matter intensity is computed before and after correc-
tion. Since this measure cannot distinguish between intensity
nonuniformity, noise, and anatomical intensity variations, it
is only suitable for showing that intensity nonuniformity is
qualitatively reduced.

IV. RESULTS

A. Correcting Random Fields

Correcting for intensity nonuniformity in a random field
illustrates that N3 is able to correct volumes that lack regions
of contiguous tissue. The improvement in the field estimate
with iterations for four different widths of the deconvolution
kernel is shown in Fig. 9. In all four cases the method is
converging in the sense that the distance between subsequent
field estimates, computed using (16), drops to zero. Note that
the FWHM of the deconvolution kernel has an impact on both
convergence rate and performance. There is a subtle improve-
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Fig. 9. Error measure versus iterations for four different estimates of the field
distributionF . The FWHM of the field distributionsF used in deconvolution
are 0.1, 0.2, 0.3, and 0.4. The maximum coefficient of variation 4.5%
corresponds to no correction. The horizontal line is the result of filtering
the uncorrected data directly.

(a) (b)

Fig. 10. Field estimation error on simulated data for a range of the FWHM
parameter and two different nonuniformity fields. Lines are shown for the
coefficients of variation corresponding to no correction for the two cases. Also
shown is the lower bound on estimation error given by fitting splines to the
nonuniformity field directly. The error bars are at plus and minus two standard
deviations, based on ten realizations of the noise and pseudo-anatomy. (a)
Field #1. (b) Field #2.

ment in accuracy and a significant decrease in convergence
rate as the FWHM is decreased.

For comparison, the same spline approximation that is
used in the N3 method is applied to the uncorrected data
directly. The smoothness of the two is comparable since the
N3 method, unlike conventional iterative filtering, has been
designed such that field smoothness does not accumulate with
iterations. As expected, since the N3 method takes advantage
of the structure of the distribution , it outperformed simple
smoothing in all four cases.

B. Correcting Simulated Data

The performance curves for ten simulated brains and a
range of the FWHM parameter are plotted in Fig. 10 for
the two different nonuniformity fields shown in Fig. 8 and
fixed basis function distance 200 mm. A coefficient
of variation below the lines corresponding to no correction
in Fig. 10 indicates a reduction in intensity nonuniformity.
Within most of the range of the FWHM shown, the N3 method
substantially improves uniformity. In general, the performance
improves as the FWHM parameter is decreased, a trend that is
consistent with the assumption that the deconvolution kernel
is narrow. However, for small values of the FWHM parameter
convergence is slow, requiring up to 50 iterations to converge.

(a) (b)

Fig. 11. Correction performance as a function of basis function distance on
simulated T1, T2, and PD scans. The FWHM parameter for this analysis
is 0.15. Also shown is the approximation error for fitting splines to the
nonuniformity field directly. The discontinuities in this curve are caused by
changes in the number of basis functions, which for efficiency is the minimum
needed for full support at the given distance between basis functions. (a) Field
#1. (b) Field #2.

TABLE I
MEAN COEFFICIENT OF VARIATION IN TISSUE

INTENSITY BEFORE AND AFTER N3 CORRECTION

before after

white matter 5.8% 5.1%T1-wieghted
grey matter 10.1% 9.8%
white matter 10.0% 9.0%

T2-weighted
grey matter 15.4% 14.3%
white matter 6.4% 4.9%

PD-weighted grey matter 8.8% 6.8%

In choosing the FWHM parameter, one makes a tradeoff
between accuracy and computation time.

It should be noted that the ideal result of zero estimation
error is unattainable. In particular, the noise and pseudo-
anatomy present in the simulations will have low frequency
components indistinguishable from intensity nonuniformity.
Furthermore, smoothness constraints imposed on the spline
fitting operation preclude an exact match to the field. The
lower bound imposed by spline approximation is also shown
in Fig. 10. Noise and pseudo-anatomy make the true lower
bound somewhat higher.

The results of correcting simulated brains for a range of
basis function distances are shown in Fig. 11. The greater
curvature of the second field produces broad minima in the
error curve. As in Fig. 10, the lower bound on the estimation
error given by directly fitting splines to the nonuniformity field
is also shown. Basis function distances of 100–200 mm are
nearly optimal for these two case. It should be noted that due
to the need to suppress noise in the simulations, the optimal
basis function distance is greater than that which can exactly
match the nonuniformity field.

C. Correcting Experimental Data

The coefficient of variation was computed for white and
grey matter intensity in each patient in each modality. The
mean across patients is shown in Table I before and after
correction for intensity nonuniformity. The statistical signif-
icance of these results was computed using a one sided
Wilcoxon signed rank test for a paired difference experiment.
All categories except grey matter in T1 showed a significant
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Intensity nonuniformity correction of a T1 weighted 27-scan av-
eraged gradient-echo MR scan: (a) and (d) transaxial and sagittal views of
uncorrected data; (b) and (e) nonuniformity field estimated by the N3 method;
(c) and (f) corrected data.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Intensity nonuniformity correction of a surface coil MR scan:
(a) and (d) transaxial and sagittal views of uncorrected data; (b) and (e)
nonuniformity field estimated by the N3 method; (c) and (f) corrected data.

reduction in variability at the 99% confidence level. The basis
function distance and FWHM parameters have been fixed for
this experiment at 200 mm and 0.15, respectively.

As a final result, two volumes are shown before and after
correction. The first, the T1-weighted 27-scan averaged MRI
shown in Fig. 12, is useful for illustration since intensity
nonuniformity that would normally be obscured by noise is
clearly visible. Note how the intensity of white matter in the
cerebellum is raised to that of the rest of the volume.

The second example, the surface coil scan shown in Fig. 13,
illustrates the performance of the algorithm under extreme
conditions, where nonuniformity is clearly visible. Since the
signal intensity drops below the level of noise near the front
of the head in this image, the foreground was segmented
manually rather than by the automated method described
previously. It should be noted that in regions where the signal
is enhanced, the noise is enhanced as well. Consequently the
noise level will vary substantially in a surface coil image after
correction. Computing as before the coefficient of variation
in manually labeled regions of white matter shows a large

reduction in white matter variability from 48% to 9.7% after
correction.

V. DISCUSSION

We have described a new method (N3) of correcting for
intensity nonuniformity that does not rely on a parametric
model of tissue intensities, nor on segmenting a volume into
contiguous regions. The former has been demonstrated by the
N3 method’s ability to correct for intensity nonuniformity in
MR data irrespective of the pulse sequence and without prior
training. The latter has been demonstrated by the methods
ability to correct for nonuniformity using the structure of
a random field, even when the nonuniformity is not clearly
visible. N3 is a fully automatic iterative method that operates
on 3-D volumetric data sets.

The algorithm requires that two parameters be selected:
, the smoothness of the estimated field; and FWHM, the

width of the deconvolution kernel. While a scheme could be
devised to choose the smoothness parameterautomatically,
our experiments show little dependence on this parameter (see
Fig. 11) and it was fixed at 200 mm. The choice of the FWHM
parameter is more sensitive as it determines the tradeoff
between accuracy and convergence rate. The results of Fig. 10
suggest that a single value of this parameter provides uniform
performance across pulse sequences and between subjects, a
result that is consistent with our qualitative assessment of
several real MR scans. The FWHM parameter has been fixed
at 0.15 throughout.

In addition to choosing these parameters, the foreground
needs to be segmented from background. While this is trivial
and automatic for volumetric scans, the surface coil image
in Fig. 13 is more difficult to segment as the signal drops
below the noise level at the front of the head. While manual
segmentation is satisfactory, perhaps a more elegant solution
would be to extend the method to weight the contribution of
each region based on its signal to noise ratio.

A difficulty with iterative optimization methods such as
N3 is that one is never certain whether the solution found
is the global or a local minimum in the objective function. In
our experience with random fields, other kinds of simulated
data, and real data, the method converges to the same solution
regardless of the initial field estimate. This behavior suggests
that the optimization is not prone to local minima.

The optimization criterion for the N3 method is to find the
smooth, slowly varying, multiplicative field that maximizes
the frequency content of the distribution of tissue intensities.
We assume that the field that satisfies this criterion is a good
approximation of the true nonuniformity field. While all of the
results presented support this hypothesis, in principle it need
not be true. In particular, if the object is itself a smooth and
slowly varying field then the correction field that maximizes
the frequency content of the intensity distribution will also
remove the natural variations from the object. For example,
if the intensity of brain tissue varies slowly in intensity from
anterior to posterior then these variations would be removed
by the algorithm along with variations due to intensity nonuni-
formity. This is a limitation of all retrospective nonuniformity
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correction methods as the two sources of variation cannot be
distinguished based on the image data alone.

For comparison, consider the approach described by Zijden-
bos et al. [5] and Dawant,et al. [14]. This method estimates
intensity nonuniformity by fitting splines to the white matter of
the brain. It is heavily model dependent in that it assumes that
regions of pure white matter, unaffected by partial volume,
can be correctly identified. Similarly, consider the expectation
maximization (EM) approach proposed by Wellset al. [18]. In
this method, tissue is modeled as belonging to one of several
tissues classes. For example, a brain could be modeled as
white matter, grey matter, and CSF. At each iteration the true
intensity is computed at each voxel based on the proportion of
each tissue class it is estimated to contain. The residual nonuni-
formity field is then computed and smoothed over the ROI.

The classifiers upon which these methods rely need to be
trained. Wells argues that once trained, the same classifier can
be used across subjects. However, the classifier still needs to be
retrained for different scan parameters. Another difficulty with
the EM method is that intensities that fall outside the tissue
model of the classifier receive excessively large corrections
that may distort the field estimate. Guillemaud and Brady
[29] address this by introducing an additional class for tissues
outside the model.

A different approach described by Meyeret al., [16] avoids
the issue of building a tissue intensity model by making
use of contiguous regions irrespective of their tissue type.
A smooth field is globally fit to the log intensities of all
regions allowing for a constant offset in each regions to
reflect its tissue type. Since this method can only make use
of contiguous regions, the correction may suffer in areas of
the brain such as the cerebellum where such regions are not
present. A second difficulty arises if contiguous regions are
mistakenly broken into smaller regions creating additional
undesired degrees of freedom. If the relative sizes of these
regions differ significantly the problem of fitting a smooth
field can become ill conditioned. In addition, the smaller the
regions are, the less information they contribute to the field
estimate. In the limiting case an isolated voxel contributes no
information. We expect this method to perform best on images
with large scale structure. In this respect, Meyer’s method and
the N3 method are complementary since the N3 method is
well suited to random fields.

All of these methods are based on the assumption of
a smooth multiplicative field model. While this model is
accurate for nonuniform sensitivity of a reception coil, it
is only an approximation for excitation field nonuniformity
since the multiplicative nonuniformity field corresponding to a
smooth excitation field may have small discontinuities caused
by differing relaxation times between regions of different
tissue. Many pulse sequences, including standard spin echo
sequences, are designed to be insensitive to low levels of exci-
tation field inhomogeneity. In addition, excitation is often done
with a scanner’s body coil, which is larger and more uniform
than the head coil used for reception. There are, however, addi-
tional field variations, beyond those measured for an unloaded
coil, caused by interaction with the subject in the form of
induced currents and standing wave effects. Although these in-

teractions affect both reception and excitation uniformity, there
is some evidence to suggest these interactions are negligible
in the human head at 1.5-T using quadrature coils [3], [30].

VI. CONCLUSIONS

An iterative method for correction of intensity nonunifor-
mity in MR volumes has been described that avoids some of
the restrictive model assumptions that plague other methods.
In particular, this N3 method does not require a model of the
tissue intensities in terms of discrete tissue classes, nor does
it rely on a segmentation of the volume into homogeneous
regions. Instead, a nonparametric model of the tissue intensi-
ties is derived directly from the data. N3 requires only two
parameters to be selected: one controlling the smoothness of
the estimated nonuniformity, the other controlling the tradeoff
between accuracy and convergence rate. Our experiments
show that both of these parameters can be chosen to provide
uniform performance independent of pulse sequence, subject,
and field shape. This is a considerable advantage in automated
data analysis as the method can be applied at an early stage,
without prior knowledge of the data. For instance, no special
precautions need be taken for pathological data that might
otherwise violate tissue model assumptions.

Experiments with simulated MR volumes show that the N3
method substantially reduces intensity nonuniformity in a vari-
ety of cases. Furthermore, real data corrected by the method is
visually uniform and shows a statistically significant reduction
in tissue intensity variation. Robust, fully automatic, and
requiring little domain specific knowledge, N3 is attractive as
a preprocessing step for a variety of MRI analysis applications.

APPENDIX

The tensor cubic spline approximation of a function is
given by

(17)

where and is a 1-D cubic spline in the variable
, or . For example, the spline for is given by

(18)

elsewhere
(19)

where is referred to as a knot location andis the distance
between knots. A spline only takes nonzero values on
the interval .

The spline coefficients for least squares approxima-
tion of a set of data are found by minimizing as follows:

(20)

where reflects the closeness of fit to the data and
reflects the roughness of the approximate function. Choosing
the parameter determines the tradeoff between the two.
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Suppose we have measurements at locations . Then
and are as follows:

(21)

(22)

where contains the ROI and is the volume of .
In matrix form, the solution of (20) for is given by

(23)

where an element of the by matrix is

(24)

(25)

and is a by matrix given by

(26)

where is an element of an by matrix with

(27)

The symbol denotes Kronecker product. and are
column vectors with elements in their natural order.is most
conveniently taken as

(28)

although this may be larger than the ROI.
Equation (23) may not be solvable directly if the smoothing

parameter is very small or zero since the matrix is often
ill conditioned. Hayes and Halliday [31] have proposed a
technique using Householder transformations to stabilize the
method. However, in practice can be chosen large enough
to avoid numerical difficulties.
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