1. Read each of the following descriptions. For each, indicate whether it is describing a derivative or an integral. Re-write the description as an equation using mathematical notation.
(a) The probability that a standard Normal variable is between -1 and 1 is the area under the curve $\frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}}$ within that range, which is roughly 0.683 .
(b) An object's height position at time t is $y=t^{3}+5 t-7$. It's velocity is the function describing how that position is changing, in this case $3 t^{2}+5$.
(c) The total revenue for some company given the number of items they are producing (x) is known to be $-x^{3}+450 x^{2}+52,500 x$. Economists describe the marginal revenue as the change in total revenue, in this case $-3 t^{2}+900 t+52,500$.
(d) The force between two charged particles is proportional to the product of the charge values and inversely proportional to the square of their distances: $f(r)=\frac{k q_{1} q_{2}}{r^{2}}$, where r is the distance in meters, q_{1} and q_{2} are the charge of the first and second particle in coulombs, and k is a constant. We can compute the work done by the particles movements as a result of their charges by calculating the area under the force curve with respect to the distance.
2. Use Wolfram Alpha to compute the following.
(a) derivative $x^{\wedge} 2-2 x+3$
(c) integrate $3 w^{\wedge} 2+2 w-9$
(b) integrate $\mathrm{y}^{\wedge} 3-9$
(d) derivative x sin ($\left.x^{\wedge} 2\right)$
3. Evaluate the following by hand.
(a) $\frac{d}{d x}\left(x^{2}-3 x+2\right)$
(c) $\frac{d}{d w}(w-4)$
(b) $\frac{d}{d x}\left(-9 x^{2}-x\right)$
(d) $\frac{d}{d x}(-3.41)$
4. Evaluate the following by hand.
(a) $\int 2 x d x$
(c) $\int_{0}^{1}-w^{2} d w$
(b) $\int\left(-3 y^{2}+2 y-1\right) d y$
(d) $\int_{\frac{1}{2}}^{3} 4 d x$
5. Evaluate the following by hand.
(a) $\lim _{x \rightarrow 2}\left(x^{2}-4\right)$
(c) $\lim _{w \rightarrow 2} \frac{w+1}{w-1}$
(b) $\lim _{y \rightarrow 1} \frac{y^{2}-2 y+1}{y^{3}-y}$
(d) $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{2 x^{2}+1}$
6. What is the order of the following derivatives?
(a) $f^{4}(x)=x^{2}-3 x+2$
(c) $\frac{d}{d x}\left(\frac{d}{d x} x^{3}\right)$
(b) $f^{\prime \prime \prime}(y)=\sin (y)+3$
(d) $\ddot{y}=-g t$
7. Evaluate the following by hand.
(a) $\frac{d}{d z}\left(3 z^{3}+2 z^{2}-3 z-1\right)$
(d) $\frac{d}{d y}\left(y^{5}-2 y\right)$
(b) $\frac{d}{d x} x^{4}$
(e) $\frac{d}{d r}\left(2 r^{3}+9\right)$
(c) $\frac{d}{d w}\left(w^{2}-2 w+4\right)$
(f) $\frac{d}{d y} \frac{1}{y}$
8. Evaluate the following by hand.
(a) $\int z^{2} d z$
(d) $\int \frac{1}{w} d w$
(b) $\int_{1}^{5}\left(2 y^{3}+y^{2}+1\right) d y$
(e) $\int_{-1}^{1}\left(x^{4}-2 x\right) d x$
(c) $\int_{1}^{5}\left(-x^{4}-x^{2}-1\right) d x$
(f) $\int\left(\frac{1}{3} w^{2}+\frac{1}{2} w\right) d w$
9. Identify the type and order of the following differential equations.
(a) $\dot{x}+x=t^{2}$
(c) $\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial x^{2}}=0$
(b) $y^{\prime \prime}-2 y^{\prime}+y=0$
(d) $\frac{d u}{d x}=2 u+x^{2}$
10. The the initial value problem for the following ODEs:
(a) $\frac{d y}{d x}=10-x, \quad y(0)=-1$
(b) $y^{\prime}=6 t^{2}, \quad y(1)=5$
(c) $\dot{w}=y^{2}-3 y+1, \quad w(0)=10$
11. Sketch the directional field for the following ODE, including isoclines and at least one integral curve.

$$
y^{\prime}=x-y
$$

12. Objects accelerate downwards due to gravity at -9.8 meters $/$ second 2. Acceleration on an object is simply it's change in velocity, and velocity is simply it's change in position. Let v_{0} be the initial velocity of the object and s_{0} be the initial height of the object. Knowing gravity is acceleration allows us to write a very simple ODE for motion: $s^{\prime \prime}(t)=-9.8, s^{\prime}(0)=v_{0}, s(0)=s_{0}$. Solve this to find the general equation for position given time. Hint: You will need to do this in two stages, first to get velocity then to get position.
