Instructor: R. Paul Wiegand

- 1. Read each of the following descriptions. For each, indicate whether it is describing a *derivative* or an *integral*. Re-write the description as an equation using mathematical notation.
 - (a) The probability that a standard Normal variable is between -1 and 1 is the *area* under the curve $\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$ within that range, which is roughly 0.683.
 - (b) An object's height position at time t is $y = t^3 + 5t 7$. It's velocity is the function describing how that position is *changing*, in this case $3t^2 + 5$.
 - (c) The total revenue for some company given the number of items they are producing (x) is known to be $-x^3 + 450x^2 + 52,500x$. Economists describe the *marginal revenue* as the *change* in total revenue, in this case $-3t^2 + 900t + 52,500$.
 - (d) The force between two charged particles is proportional to the product of the charge values and inversely proportional to the square of their distances: $f(r) = \frac{kq_1q_2}{r^2}$, where *r* is the distance in meters, q_1 and q_2 are the charge of the first and second particle in coulombs, and *k* is a constant. We can compute the *work* done by the particles movements as a result of their charges by calculating the *area* under the force curve with respect to the distance.
- 2. Use Wolfram Alpha to compute the following.
 - (a) derivative $x^2 2x + 3$ (c) integrate $3w^2 + 2w 9$
 - (b) integrate y^3 9

(d) derivative
$$x \sin(x^2)$$

- 3. Evaluate the following by hand.
 - (a) $\frac{d}{dx}(x^2 3x + 2)$ (b) $\frac{d}{dx}(-9x^2 - x)$ (c) $\frac{d}{dw}(w - 4)$ (d) $\frac{d}{dx}(-3.41)$
- 4. Evaluate the following by hand.

(a)
$$\int 2x \, dx$$

(b) $\int (-3y^2 + 2y - 1) \, dy$
(c) $\int_0^1 -w^2 \, dw$
(d) $\int_{\frac{1}{2}}^3 4 \, dx$

5. Evaluate the following by hand.

(a)
$$\lim_{x\to 2} (x^2 - 4)$$
 (c) $\lim_{w\to 2} \frac{w+1}{w-1}$
(b) $\lim_{y\to 1} \frac{y^2 - 2y + 1}{y^3 - y}$ (d) $\lim_{x\to\infty} \frac{x^2 - 1}{2x^2 + 1}$

- 6. What is the *order* of the following derivatives?
 - (a) $f^{4}(x) = x^{2} 3x + 2$ (b) $f'''(y) = \sin(y) + 3$ (c) $\frac{d}{dx} \left(\frac{d}{dx} x^{3} \right)$ (d) $\ddot{y} = -gt$
- 7. Evaluate the following by hand.
 - (a) $\frac{d}{dz} (3z^3 + 2z^2 3z 1)$ (b) $\frac{d}{dx}x^4$ (c) $\frac{d}{dw} (w^2 - 2w + 4)$ (d) $\frac{d}{dy} (y^5 - 2y)$ (e) $\frac{d}{dr} (2r^3 + 9)$ (f) $\frac{d}{dy} \frac{1}{y}$
- 8. Evaluate the following by hand.

(a)
$$\int z^2 dz$$

(b) $\int_{1}^{5} (2y^3 + y^2 + 1) dy$
(c) $\int_{1}^{5} (-x^4 - x^2 - 1) dx$
(d) $\int \frac{1}{w} dw$
(e) $\int_{-1}^{1} (x^4 - 2x) dx$
(f) $\int (\frac{1}{3}w^2 + \frac{1}{2}w) dw$

- 9. Identify the type and order of the following differential equations.
 - (a) $\dot{x} + x = t^2$ (b) y'' - 2y' + y = 0(c) $\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0$ (d) $\frac{du}{dx} = 2u + x^2$
- 10. The the initial value problem for the following ODEs:
 - (a) $\frac{dy}{dx} = 10 x$, y(0) = -1(b) $y' = 6t^2$, y(1) = 5(c) $\dot{w} = y^2 - 3y + 1$, w(0) = 10
- 11. Sketch the directional field for the following ODE, including isoclines and at least one integral curve.

$$y' = x - y$$

12. Objects accelerate downwards due to gravity at -9.8 *meters/second*². Acceleration on an object is simply it's *change* in velocity, and velocity is simply it's *change* in position. Let v_0 be the initial velocity of the object and s_0 be the initial height of the object. Knowing gravity is acceleration allows us to write a very simple ODE for motion: s''(t) = -9.8, $s'(0) = v_0$, $s(0) = s_0$. Solve this to find the general equation for position given time. *Hint: You will need to do this in two stages, first to get velocity then to get position*.