1. Evaluate the following exponents:
(a) 3^{4}
(d) $\frac{4^{2}}{4^{3}}$
(b) $\left(2^{5}\right) \cdot\left(2^{3}\right)$
(e) 5^{4-3}
(c) $\frac{10^{2}}{2}$
(f) 3^{-2}
2. Evaluate the following logarithms:
(a) $\log _{10} 1000$
(e) $\log _{7} 49$
(b) $\lg 256$
(f) $\frac{\lg 256}{\lg 64}$
(c) $\ln e^{2}$
(g) $\log _{10}(4)+\log _{10}(25)$
(d) $e^{\ln 3}$
(h) $\left(a^{\log _{a} 4}\right)^{2}$
3. Show that: $\log _{b}\left(x^{n}\right)=n \cdot\left(\log _{b} x\right)$
4. Simplify (if necessary) and write the following fractional exponents as radicals then evaluate them:
(a) $16^{\frac{1}{2}}$
(e) $125^{\frac{2}{3}}$
(b) $729^{\frac{1}{3}}$
(f) $5^{\frac{2}{3}} \cdot 25^{\frac{1}{3}}$
(c) $27^{\frac{2}{3}}$
(g) $\frac{27^{\frac{2}{3}}}{27^{\frac{1}{3}}}$
(d) $3125^{\frac{3}{5}}$
(h) $\log _{10}\left(10^{\frac{1}{2}}\right)$
5. Show that: $\sqrt[n]{x^{m}}=\sqrt[n]{(x)^{m}}=(\sqrt[n]{x})^{m}$
6. Which of the following is not a function?
(a) $x^{2}+y^{2}=1$
(c) $\{0 \mapsto 1, \quad 1 \mapsto-1, \quad 2 \mapsto 0, \quad 3 \mapsto-1\}$
(b) $y=2 x^{3}-3 x^{2}+x-1$
(d) $\{0 \mapsto 1, \quad 1 \mapsto-1, \quad 0 \mapsto 2, \quad 3 \mapsto-1\}$
7. Given $f(x)=x^{2}+6 x+9$ evaluate each of the following.
(a) $f(0)$
(c) $f(f(-2))$
(b) $f(-3)$
(d) $f(3)$
8. Sketch the polynomial from the previous question.
9. Indicate which of the following functions are polynomials, and for the polynomials, identify it's degree.
(a) $f(x)=x^{3}-2 x+1$
(d) $f(w)=(w+3)^{3}$
(b) $f(\theta)=\theta^{3}-\sin ^{2} \theta$
(e) $f(x)=3^{x}$
(c) $f(x)=x^{4}-2 x^{3}+2 x^{2}-x+1$
(f) $f(y)=\frac{1-e^{y}}{1+e^{y}}$
10. Factor and find the roots of the following polynomials.
(a) $f(y)=(y-1) \cdot(y+2) \cdot y$
(d) $f(z)=z^{2}+4 z+2$
(b) $f(x)=x^{2}-4$
(e) $f(x)=x^{3}-2 x^{2}-x+2$
(c) $f(w)=w^{3}+3 w^{2}+3 w+1$
(f) $f(x)=x^{4}+x^{3}-11 x^{2}-9 x+18$
11. Convert each of the following angles to radians. Express your answers as fractions of π
(a) 60°
(c) 90°
(e) 180°
(b) 45°
(d) 360°
(f) 30°
12. Convert each of the following angles to radians. Round to the nearest hundredths.
(a) 18°
(c) 276°
(b) 92°
(d) 135°
13. Convert each of the following angles to degrees. Round to the nearest tenths.
(a) $\frac{\pi}{4}$
(c) 6.013
(b) $\frac{2 \pi}{7}$
(d) 4.32
14. Use a calculator to evaluate the following expressions, correct to three decimal places.
(a) $\cos (\pi / 3)$
(c) $\sec (0.3)$
(e) $\cos ^{2}\left(\frac{2 \pi}{7}\right)$
(b) $\sin (2.013)$
(d) $\tan (1.82)$
(f) $\cot ^{2}\left(27^{\circ}\right)$
15. Show that $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$.
16. Consider the following right triangle. Then answer the questions to the right.

(a) Let $x:=2, h=4$. What is θ ?
(b) Let $\theta:=\frac{\pi}{3}, h=4$. What is y ?
(c) Let $\theta:=\frac{2 \pi}{5}, x=4$. What is h ?
(d) Let $x:=3, y=5$. What is θ ?
17. Convert each of the following 2D polar coordinates into 2D planar Euclidean coordinates. Round to the nearest hundreths.
(a) $\rho=2, \theta=\frac{\pi}{4}$
(d) $\rho=3.1, \theta=5.317$
(b) $\rho=1, \theta=270^{\circ}$
(e) $\rho=9 \frac{2}{3}, \theta=47^{\circ}$
(c) $\rho=\frac{1}{3}, \quad \theta=\frac{5 \pi}{3}$
(f) $\rho=10.42, \theta=\frac{7 \pi}{6}$
