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1 Introduction

Comprehensive discussion of probabilities is well outside the scope of this course; how-
ever, those students who aren’t familiar with at least some basics regarding probabilities
will face some challenges. This document is meant to address this gap by providing an
easy-to-read primer of a handful of very basic topics in probability leading up to Bayes
rule. It’s meant for those who haven’t been exposed to much probability and those who
would like a quick refresher after having been away from it for a while. Those com-
fortable with the topics discussed in the document are free to skim it or omit reading it
entirely.

While a comprehensive and extensive knowledge of probability is not strictly neces-
sary for this course, students who are interested in pursuing in-depth study of modern
machine learning techniques would do well to have had a course that covers probabili-
ties. In lieu of such a course, self-study using any number of books on the subject would
be useful. I suggest the freely available text by Grimstead and Snell, Introduction to Proba-
bility.

1.1 Some Terms: Experiments, Outcomes, & Events (Oh My!)

It’s helpful to start by being clear with some common terminology used when discussing
probability. Perhaps the four most basic terms are experiment, outcome, events, and proba-
bility itself. Let’s deal with the first three first since they are the simplest.

• Experiment – A scenario that involves chance and produces outcomes

• Outcomes – The potential results of an experimental trial

• Event – One or more specific outcome of a particular experiment

Experiment 1 Flip a Coin. Since the coin may land head-side up or tail-side up (assuming it
cannot land any other way), the outcomes of that experiment are heads and tails. If I flip the coin
and it lands with the head-side up, then I have a heads event.

Experiment 2 Roll a Die. The outcomes of rolling a fair, six-sided die are 1, 2, 3, 4, 5, and 6.
Getting a 6 on a particular roll of the die is an event.
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1.2 Views of Probability

There are many views of what probability really is, ranging from slight philosophical dis-
tinctions to differences that have practical implications for the mathematics. By and large,
these differences will have little impact on our discussions in this class, but it’s still worth
considering several common views of probability:

• Frequency – Probability is the relative frequency with which events occur in
the long run;

• Subjective – Probability reflects a subjective degree of belief. For example, what
we’re willing to bet on given what we know;

• Propensity – Probability reflects an inherent uncertainty in some experiment
or process;

• Logical – Probability is an extension of formal logic that incorporates
rational / objective degree of belief.

In many cases, these views are fairly consistent with one another; however, there are some
interesting philosophical differences. For example, what is the probability of the outcome
of an experiment that can only ever be performed one time? A frequentist might wrestle
with this quite differently from someone with a propensity view. Another philosophical
distinction is exposed when you consider the following notion. Suppose I flip a coin and
observe the event that it lands heads-side up. Further, suppose you observe me flip the
coin but do not know the result of the flip. What is the probability of the heads event? Is it
fair to say that to me, it is 1.0, but to you it is 0.5? Is probability objective or subjective? Etc.

The philosophy of probability is all fun and games until someone might have lost a
fractional body part that we are reasonably certain was an eye, but for this document
let’s take a frequentist approach and wash our hands of the philosophy. Taking the above
examples and a frequentist approach, we simply enumerate the possible outcomes and
compute probability by determining how frequently we expect them to occur in the fu-
ture. In both of the coin-flipping and die-throwing examples above, if the coin and die are
fair then we don’t expect any outcome to appear with more frequency than another. In
the first case, the probability of the event heads is the same as the probability of the event
tails — since there are two outcomes, each occurs with probability 1

2
. Likewise, with a fair

die, each number occurs with probability 1
6
.

For reference, I use the notation Pr {A} to mean the “probability of event A”. Sometimes
it’s important to make the experiment and result clear in the notation. For example, in
class I may sometimes write the “probability that the outcome of experimental trial X is 6” as
Pr {X = 6}. This can also be read is the “probability that random variable X is 6”, but don’t
worry about what a random variable is just yet.
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2 Fun with Shapes

Coin-flipping and dice-throwing are simple enough when we’re discussing only single
throws, or when the outcomes are very simply described. In many cases, though, we
need to talk about more complicated combinations of different kinds of outcomes. Let’s
setup a simple running example that we can use for discussion.

Suppose we place six shapes in a basket, three squares and
three circles. Suppose further than two of three squares are
blue, while the third is red and that the colors of the circles are
precisely the opposite. Our experiments will involve drawing
a shape from the basket (with replacement — meaning we’ll al-
ways throw the shape back in when we’re done and shake the
basket up again). With this, we can clearly elicit some obvious
probabilities:

• What is the probability that a drawn shape is red? Pr {red} = 1
2

• What is the probability that a drawn shape is blue? Pr {blue} = 1
2

• What is the probability that a drawn shape is a circle? Pr {circle} = 1
2

• What is the probability that a drawn shape is a square? Pr {square} = 1
2

2.1 Joint Probability vs. Conditional Probability

Among the easiest things to get confused about in probability is the difference between
a joint probability and a conditional probability. The way I like to make the difference clear
in my mind is by trying to remember that the joint probability is considering joint events
over some outcome space, while the conditional probability is considering events within
a subset of the outcome space (the subset that meet some “condition”). This often translates
to differences in how some denominator is expressed, as we’ll see here.

The probability for joint events A and B is sometimes written Pr {A ∧B}, and some-
times Pr {A,B}; I will use the latter. In the shapes example Pr {square, blue} refers to the
“probability of drawing a shape that is both a square and blue”. Continuing with our example:

• Pr {square, blue} = 2
6
= 1

3

• Pr {circle, blue} = 1
6

• Pr {square, red} = 1
6

• Pr {circle, red} = 2
6
= 1

3

Notice that the denominator was always six (before we reduce the fraction) because
there are six possible outcomes in the set.

For conditional probability it’s typical to use notation such as Pr {A|B}, translating the
funny vertical bar as “given”. So we would read Pr {square|blue} as the “probability that we
draw a square, given that we are told beforehand the shape is blue”. Again, from our example:
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• Pr {square|blue} = 2
3

• Pr {circle|blue} = 1
3

• Pr {square|red} = 1
3

• Pr {circle|red} = 2
3

Here the denominator is always 3 because in this case, whether red or blue, if we first
select a color then there are three shapes remaining.

2.2 The Fundamental Rule

Joint probabilities and conditional probabilities are related by the fundamental rule (some-
times called the product rule). The fundamental rule says that the probability of two events
occurring together is the probability of one event given that the other is true times the
probability that the other is true:

Pr {A,B} = Pr {A|B} · Pr {B}

It’s easy to get some intuition for this based on our shapes example. Suppose I first
select the color and remove all shapes not of those colors from the basket, then I select
the shape. The chance of getting blue is 1

2
, but if I had chosen blue the chance of getting

a square from the subsequent draw would be 2
3
. This is the same as if I’d just selected a

shape and asked what is the probability that it is both a square and blue:

Pr {square, blue} = Pr {square|blue} · Pr {blue}
2

6
=

[
2

3
· 1
2

]
=

1

3

Indeed, we can use this relationship to help understand the notion of independence.
Event A is independent of event B if conditioning on B doesn’t change the probability —
that is, if you first remove all non-B events then the probability for A doesn’t change.
Formally, we say that A is independent of B iff Pr {A|B} = Pr {A}. It makes intuitive
sense to think about it this way, but it’s more common to deal with independence in
terms of joint probability: When A is independent of B, the Pr {A,B} = Pr {A} · Pr {B}.
But with the fundamental rule, we can see why this is the same thing now!

Pr {A,B} = Pr {A|B} · Pr {B} = Pr {A} · Pr {B}

Notice that, in general if we want the probability that we
get event A or event B, we cannot simply add Pr {A} and
Pr {B} since any outcomes they have in common will be
double-counted. So we must subtract the joint probability:
Pr {A ∨B} = Pr {A}+Pr {B}−Pr {A,B}. When A is indepen-
dent of B, we can write this as: Pr {A}+Pr {B}−Pr {A}Pr {B} .
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2.3 Marginal Probabilities

In the coming chapters, you’ll also see terms like marginal probability, prior probability, or
posterior probability, as well. We’ll discuss the latter two below, but first let’s get a handle
on what a marginal probability is. It’s easier to first explain marginalization, sometimes
called the summation rule. The term comes from the idea that one might enumerate all the
possible values of something on (say) some kind of ledger, writing the probabilities for
each thing in the “margin” of the ledger, then add them all up.

Suppose we have some event X that may result in many outcomes, including x, and
we have another event Y that can take on values y1, y2, . . . yn. Then one way of getting the
probability of the event x is to add up all the joint probabilities of x and each yi. Because
of the fundamental rule, we can get a similar result using conditional probabilities.

Pr {x} =
n∑

i=1

Pr {x, yi} =
n∑

i=1

Pr {x|yi}Pr {yi}

In this case, we are marginalizing over the outcomes for Y to get the marginal probability
Pr {x}. From our shape example:

Pr {square} = Pr {square, red}+ Pr {square, blue}
= Pr {square|red}Pr {red}+ Pr {square|blue}Pr {blue}

1

2
=

[
1

3
· 1
2
+

2

3
· 1
2

]
=

[
1

6
+

2

6
=

3

6

]
=

1

2

3 Bayes Rule

Notice something interesting about the fundamental rule: Since the order doesn’t matter
when computing a joint probability, the fundamental rule really gives us two expressions:

Pr {A,B} = Pr {A|B}Pr {B}
Pr {A,B} = Pr {B|A}Pr {A}

Noting both of these expressions, it doesn’t take much algebra to realize the fact of the
enormously useful equation known as Bayes Rule1:

Pr {A|B} = Pr {B|A}Pr {A}
Pr {B}

Bayes essentially gives us a way to flip our conditional probabilities around when
we don’t have everything we might want. The basic idea of Bayes is easy to remember,
but students sometimes have a hard time remembering which term goes where in the
expression. If you get confused, just remember that you can easily work it out from the
fundamental rule.

1Note that many mathematicians actually accredit Laplace with determining this in spite of the popular
use of the phrase “Bayes Rule”.
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3.1 Bayes Anatomy

Often when Bayes is applied (particularly in machine learning), we are updating some
probability after having been given some new piece of information — that is, we have
some estimate for Pr {A}, then we’re given some new information, and we’d like to see
how this affects the probability. Perhaps the following very slight reformulation will
make the intuition for this clearer:

Pr {A after new knowledge} = Pr {A} · (some update factor based on knowledge)

Pr {A|B} = Pr {A} ·
(

Pr {B|A}
Pr {B}

)
=

Pr {B|A}Pr {A}
Pr {B}

In that sense, we can think of Pr {A} as the prior probability for A (what we knew about
A before we learn B), and Pr {A|B} as the posterior probability of A (what we know about A
after we learn B). Here is a diagram to bring it all together:

Sometimes we don’t know Pr {B} directly. But if we can calculate Pr {B|ai} · Pr {ai}
for all ai, then we can use marginalization to help us:

Pr {aj|B} =
Pr {B|aj}Pr {aj}∑
ai∈A Pr {B|ai}Pr {ai}

4 Confusion & Probabilities

The ideas and mathematics behind marginal and conditional probabilities are simple, but
people don’t always think naturally about probabilities. As a result of our (perhaps) poor
intuition, it’s sometimes easy to jump to the wrong conclusions. This section provides
several examples where the most obvious / common answer tends to be the wrong an-
swer, precisely because of our counter-intuition. See if you can work out why the results
are the way they are.
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4.1 Bertrand’s Boxes

Suppose there are three boxes, each with two coins in them. One box has two gold coins,
one has two silver coins, and the third has one of each. Suppose further that I select a
box uniformly at random (i.e., each of the three boxes have the same probability of being
selected) and select a coin uniformly at random from the box without looking at the other
coin.

Question: If the first coin is gold, what is the probability that the other coin in that
box is gold?

Answer: The probability is 2
3
.

4.2 Monty Hall

On a game show, you are presented with three doors, behind one of which is an iPad and
behind the other two are rolled up newspapers from two years ago. You are asked to pick
one of the doors but before the door is opened one of the other two doors is opened to
reveal a rolled up newspaper. You are given the option to keep your choice or switch to
the remaining unopened door. Whichever door you open, you win the prize behind it.

Question: Is the probability of winning the iPad higher, lower, or the same, if you
choose to switch versus if you stick with your original choice?

Answer: It is better to switch. The probability of winning if you switch is 2
3
.

Hint: This is essentially the same question as Bertrand’s Boxes.

4.3 Am I Diseased?

You are given a test for a disease that shows a positive result. You know that approxi-
mately 8 in 1,000 people get the disease, and you know that the test is pretty accurate:
Only about 2 in 100 patients with the disease test negatively, and only about 3 in 100
patients without the disease test positively.

Question: Is it more likely than not that you have the disease?

Answer: No. Knowing the test results, the probability that you have the disease is
still only about 0.21.

Hint 1: You are told Pr {testresult|diseasestate}, but you really want know
Pr {diseasestate|testresult}. Do you see why?

Hint 2: Remember the marginalization we did at the bottom of the previous page.
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